Robust LiDAR-Camera Alignment With Modality Adapted Local-to-Global Representation

计算机科学 人工智能 激光雷达 计算机视觉 杠杆(统计) 模式识别(心理学) 遥感 地质学
作者
Angfan Zhu,Yang Xiao,Chengxin Liu,Zhiguo Cao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (1): 59-73 被引量:10
标识
DOI:10.1109/tcsvt.2022.3197212
摘要

LiDAR-Camera alignment (LCA) is an important preprocessing procedure for fusing LiDAR and camera data. For it, one key issue is to extract unified cross-modality representation for characterizing the heterogeneous LiDAR and camera data effectively and robustly. The main challenge is to resist the modality gap and visual data degradation during feature learning, while still maintaining strong representative power. To address this, a novel modality adapted local-to-global representation learning method is proposed. The research efforts are paid in 2 main folders via modality adaptation and capturing global spatial context. First for modality gap resistance, LiDAR and camera data is projected into the same depth map domain for unified representation learning. Particularly, LiDAR data is converted to depth map according to pre-acquired extrinsic parameters. Thanks to the recent advantage of deep learning based monocular depth estimation, camera data is transformed into depth map in data driven manner, which is jointly optimized with LCA. Secondly to capture global spatial context, ViT (vision transformer) is introduced to LCA. The concept of LCA token is proposed for aggregating the local spatial patterns to form global spatial representation with transformer encoding. And, it is shared by all the samples. In this way, it can involve global sample-level information to leverage generalization ability. The experiments on KITTI dataset verify superiority of our proposition. Furthermore, the proposed approach is more robust to camera data degeneration (e.g., imaging blurring and noise) often faced by the practical applications. Under some challenging test cases, the performance advancement of our method is over $1.9~cm$ /4.1° on translation / rotation error. While our model size (8.77M) is much smaller than existing methods (e.g., LCCNet of 66.75M). The source code will be released at https://github.com/Zaf233/RLCA upon acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡晓夏完成签到,获得积分10
1秒前
小王很哇塞完成签到 ,获得积分10
2秒前
李健应助wu采纳,获得10
3秒前
Orange应助小雨采纳,获得10
4秒前
psycho完成签到,获得积分20
5秒前
Jolin发布了新的文献求助30
5秒前
娃哈哈完成签到,获得积分10
5秒前
6秒前
科研通AI2S应助顺心土豆采纳,获得10
6秒前
慕青应助十药九茯苓采纳,获得10
6秒前
英俊的铭应助95采纳,获得10
6秒前
7秒前
8秒前
虞方超完成签到,获得积分10
9秒前
luoyutian发布了新的文献求助30
9秒前
Davidjin完成签到,获得积分10
9秒前
9秒前
科研通AI5应助朴实觅波采纳,获得10
10秒前
望仔发布了新的文献求助10
11秒前
yang发布了新的文献求助10
11秒前
12秒前
killer发布了新的文献求助10
12秒前
12秒前
herococa应助团子采纳,获得10
13秒前
sunrise完成签到,获得积分10
13秒前
安柒柒完成签到,获得积分20
13秒前
拂晓完成签到,获得积分10
14秒前
怪胎完成签到,获得积分10
14秒前
15秒前
16秒前
16秒前
无极微光应助不会取名字采纳,获得20
17秒前
小雨发布了新的文献求助10
17秒前
luoyutian完成签到,获得积分10
17秒前
拂晓发布了新的文献求助10
18秒前
18秒前
19秒前
Jasper应助刘谦毅采纳,获得10
19秒前
19秒前
无极微光应助oldyang采纳,获得20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061798
求助须知:如何正确求助?哪些是违规求助? 4285762
关于积分的说明 13355425
捐赠科研通 4103625
什么是DOI,文献DOI怎么找? 2246823
邀请新用户注册赠送积分活动 1252546
关于科研通互助平台的介绍 1183447