Diagnosing Alzheimer’s disease from on-line handwriting: A novel dataset and performance benchmarking

笔迹 计算机科学 标杆管理 情感(语言学) 疾病 协议(科学) 物理医学与康复 认知 人工智能 机器学习 医学 神经科学 心理学 病理 替代医学 沟通 营销 业务
作者
Nicole Dalia Cilia,Giuseppe De Gregorio,Claudio De Stefano,Francesco Fontanella,Angelo Marcelli,Antonio Parziale
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:111: 104822-104822 被引量:45
标识
DOI:10.1016/j.engappai.2022.104822
摘要

Neurodegenerative diseases are caused by the progressive degeneration of nerve cells that affect motor skills and cognitive abilities with increasing severity. Unfortunately, there is no cure for this type of disease and their impact can only be slowed down with specific pharmacological and rehabilitative therapies. Early diagnosis, therefore, remains the primary means to delay brain damage and improve the quality of life of people affected. Neurodegenerative diseases also affect movement fine control. Consequently, the analysis of handwriting dynamics can represent an effective tool to support an early diagnosis of these diseases. While many methods have been proposed in the literature based on the use of a wide range of handwriting tasks, researchers have not yet defined a universally accepted standard experimental protocol to collect data. Furthermore, although some databases containing handwriting data have been produced, only a few of them were designed specifically for research on neurodegenerative diseases, and, in most cases, they involve a small number of participants performing a few tasks. Here, we introduce the DARWIN (Diagnosis AlzheimeR WIth haNdwriting) dataset to overcome these drawbacks, which contains handwriting samples from people affected by Alzheimer’s and a control group. The dataset includes data from 174 participants, acquired during the execution of handwriting tasks, performed according to a protocol specifically designed for the early detection of Alzheimer’s. We report the results of the experiments performed to evaluate the effectiveness of the proposed tasks and features in capturing the distinctive aspects of handwriting that support the diagnosis of Alzheimer’s disease. • We introduce the DARWIN dataset (Diagnosis AlzheimeR WIth haNdwriting). • The dataset contains handwriting data from people affected by Alzheimer’s. • The dataset is the largest publicly available in terms of number of participants and tasks. • We investigated the effectiveness of the proposed tasks and the features extracted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
norman驳回了冰魂应助
5秒前
耍酷青梦完成签到 ,获得积分10
5秒前
kakafan完成签到,获得积分10
7秒前
科研通AI5应助山山而川采纳,获得10
7秒前
迷路发布了新的文献求助10
9秒前
科研通AI5应助诸天真采纳,获得10
10秒前
13秒前
神内打工人完成签到 ,获得积分10
13秒前
16秒前
体贴凤灵发布了新的文献求助10
18秒前
Hello应助en采纳,获得10
18秒前
18秒前
在水一方应助周浩宇采纳,获得10
19秒前
ni完成签到,获得积分10
20秒前
bookgg完成签到 ,获得积分10
21秒前
Yue发布了新的文献求助10
22秒前
22秒前
23秒前
Owen应助研友_nEjYyZ采纳,获得10
23秒前
英姑应助Nat采纳,获得10
24秒前
24秒前
山山而川发布了新的文献求助10
24秒前
28秒前
英姑应助体贴凤灵采纳,获得10
28秒前
火星上的安柏完成签到,获得积分10
29秒前
阳光发布了新的文献求助10
30秒前
Yue完成签到,获得积分10
30秒前
温暖涫完成签到 ,获得积分10
32秒前
32秒前
ding应助眯眯眼的朋友采纳,获得10
35秒前
liutg24完成签到,获得积分10
35秒前
KKK研发布了新的文献求助10
37秒前
悦耳孤萍发布了新的文献求助10
37秒前
星辰大海应助17835152738采纳,获得30
39秒前
39秒前
40秒前
41秒前
jyy完成签到,获得积分10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781842
求助须知:如何正确求助?哪些是违规求助? 3327435
关于积分的说明 10231080
捐赠科研通 3042297
什么是DOI,文献DOI怎么找? 1669967
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758808