Deep transfer learning for failure prediction across failure types

学习迁移 人工智能 计算机科学 机器学习 工程类
作者
Zhe Li,Eivind Kristoffersen,Jingyue Li
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:172: 108521-108521 被引量:12
标识
DOI:10.1016/j.cie.2022.108521
摘要

With the increasing development of artificial intelligence (AI) technologies, deep learning-driven approaches have been widely applied to predicate different machinery failures. One key challenge of failure prediction is to collect sufficient data, especially data of various failure types, to train the data-driven models. Existing studies focus on using transfer learning to transfer knowledge across machines or domains, but not across failure types. In this study, we hypothesise that knowledge about failure among similar failure types is transferable. Should the hypothesis hold, companies may no longer require a large amount of all types of failure data for predictive maintenance. This will increase the companies' overall implementation feasibility and productivity gains. We tested our hypothesis on knowledge transferability for failure prediction in an experiment performed on rotating machinery with vibration signals. During the experiment, we first calibrated the performance of the trained deep neural network in each impending failure type. Then, we leveraged the architecture and hyperparameters of the neural network model trained from one type of failure as the pre-trained model for knowledge transfer. The pre-trained model is fine-tuned with data from another type of failure of the same machine. After that, we compared the performance of the neural network model to predict the second type of failure before and after knowledge transfer. Results showed that transferring knowledge obtained from one type of failure could vastly improve the performance of predicting another type of failure, which may not have sufficient data to train a good prediction model. This result implies that predictive analytics can apply parameter-based deep transfer learning (TL) to address the challenge of insufficient data on all types of machine failures for failure prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲁卓林发布了新的文献求助10
刚刚
水谷隆也完成签到 ,获得积分10
1秒前
科研通AI6应助Eva采纳,获得10
1秒前
louiselin完成签到,获得积分10
1秒前
药小博发布了新的文献求助10
1秒前
多金完成签到,获得积分10
2秒前
Louie发布了新的文献求助10
2秒前
2秒前
龙虾发票完成签到,获得积分10
2秒前
麦子完成签到,获得积分10
2秒前
2秒前
醒醒发布了新的文献求助10
3秒前
充电宝应助xiao采纳,获得10
3秒前
A砷s完成签到,获得积分10
3秒前
pluto应助幺幺采纳,获得10
3秒前
4秒前
重要小兔子完成签到,获得积分10
5秒前
英姑应助麦迪努尔采纳,获得10
5秒前
英俊的铭应助半夏采纳,获得10
6秒前
张大旺完成签到,获得积分10
6秒前
zxcvbnm完成签到,获得积分10
6秒前
7秒前
www完成签到 ,获得积分10
7秒前
过时的稀发布了新的文献求助10
7秒前
张奇强完成签到,获得积分10
7秒前
小橘发布了新的文献求助10
8秒前
充电宝应助Simple采纳,获得10
8秒前
Zoro完成签到,获得积分10
8秒前
8秒前
8秒前
Eddy完成签到,获得积分10
8秒前
111发布了新的文献求助10
8秒前
8秒前
lu发布了新的文献求助10
9秒前
竹简完成签到,获得积分10
9秒前
9秒前
攀攀完成签到,获得积分10
9秒前
广东最奶的龙完成签到,获得积分10
9秒前
科研通AI6应助boyang采纳,获得10
9秒前
小美完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316787
求助须知:如何正确求助?哪些是违规求助? 4459242
关于积分的说明 13874397
捐赠科研通 4349242
什么是DOI,文献DOI怎么找? 2388650
邀请新用户注册赠送积分活动 1382839
关于科研通互助平台的介绍 1352214