OGMN: Occlusion-guided multi-task network for object detection in UAV images

闭塞 计算机视觉 人工智能 计算机科学 任务(项目管理) 特征(语言学) 过程(计算) 模式识别(心理学) 工程类 医学 语言学 哲学 系统工程 心脏病学 操作系统
作者
Xuexue Li,Wenhui Diao,Yongqiang Mao,Peng Gao,Xiuhua Mao,Xinming Li,Xian Sun
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:199: 242-257 被引量:23
标识
DOI:10.1016/j.isprsjprs.2023.04.009
摘要

Occlusion between objects is one of the overlooked challenges for object detection in UAV images. Due to the variable altitude and angle of UAVs, occlusion in UAV images happens more frequently than that in natural scenes. Compared to occlusion in natural scene images, occlusion in UAV images happens with feature confusion problem and local aggregation characteristic. And we found that extracting or localizing occlusion between objects is beneficial for the detector to address this challenge. According to this finding, the occlusion localization task is introduced, which together with the object detection task constitutes our occlusion-guided multi-task network (OGMN). The OGMN contains the localization of occlusion and two occlusion-guided multi-task interactions. In detail, an occlusion estimation module (OEM) is proposed to precisely localize occlusion. Then the OGMN utilizes the occlusion localization results to implement occlusion-guided detection with two multi-task interactions. One interaction for the guide is between two task decoders to address the feature confusion problem, and an occlusion decoupling head (ODH) is proposed to replace the general detection head. Another interaction for guide is designed in the detection process according to local aggregation characteristic, and a two-phase progressive refinement process (TPP) is proposed to optimize the detection process. Extensive experiments demonstrate the effectiveness of our OGMN on the Visdrone and UAVDT datasets. In particular, our OGMN achieves 35.0% mAP on the Visdrone dataset and outperforms the baseline by 5.3%. And our OGMN provides a new insight for accurate occlusion localization and achieves competitive detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
orixero应助从容芷容采纳,获得10
2秒前
2秒前
芊芊完成签到 ,获得积分10
2秒前
2秒前
3秒前
123发布了新的文献求助10
3秒前
3秒前
研友_Z1WrgL完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
guohuahe关注了科研通微信公众号
5秒前
芊芊关注了科研通微信公众号
6秒前
JamesPei应助Rubywang采纳,获得10
6秒前
6秒前
7秒前
语梦发布了新的文献求助10
8秒前
amupf发布了新的文献求助10
8秒前
pfliu完成签到 ,获得积分10
8秒前
9秒前
深情安青应助brd采纳,获得10
9秒前
尊敬硬币完成签到 ,获得积分10
10秒前
陈长筱发布了新的文献求助10
12秒前
13秒前
夏瑞完成签到,获得积分10
13秒前
brd完成签到,获得积分10
17秒前
大气的醉香完成签到,获得积分10
18秒前
22秒前
甜蜜的盼秋完成签到,获得积分10
22秒前
23秒前
大个应助1234采纳,获得10
23秒前
23秒前
23秒前
24秒前
25秒前
guohuahe发布了新的文献求助10
25秒前
龙龙ff11_发布了新的文献求助10
26秒前
Squid发布了新的文献求助10
27秒前
27秒前
Sunday发布了新的文献求助10
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4027918
求助须知:如何正确求助?哪些是违规求助? 3567305
关于积分的说明 11354411
捐赠科研通 3298381
什么是DOI,文献DOI怎么找? 1816283
邀请新用户注册赠送积分活动 890719
科研通“疑难数据库(出版商)”最低求助积分说明 813726