DNA-m6A calling and integrated long-read epigenetic and genetic analysis with fibertools

表观遗传学 计算生物学 DNA测序 生物 DNA DNA甲基化 鉴定(生物学) 遗传学 纳米孔测序 单分子实时测序 DNA测序器 基因 基因表达 植物
作者
Anupama Jha,Stephanie C. Bohaczuk,Yizi Mao,Jane Ranchalis,Benjamin J. Mallory,Alan Min,Morgan O. Hamm,Elliott Swanson,Danilo Dubocanin,Connor Finkbeiner,Tony Li,Dale Whittington,William Stafford Noble,Andrew B. Stergachis,Mitchell R. Vollger
标识
DOI:10.1101/2023.04.20.537673
摘要

Abstract Long-read DNA sequencing has recently emerged as a powerful tool for studying both genetic and epigenetic architectures at single-molecule and single-nucleotide resolution. Long-read epigenetic studies encompass both the direct identification of native cytosine methylation as well as the identification of exogenously placed DNA N 6 -methyladenine (DNA-m6A). However, detecting DNA-m6A modifications using single-molecule sequencing, as well as co-processing single-molecule genetic and epigenetic architectures, is limited by computational demands and a lack of supporting tools. Here, we introduce fibertools , a state-of-the-art toolkit that features a semi-supervised convolutional neural network for fast and accurate identification of m6A-marked bases using PacBio single-molecule long-read sequencing, as well as the co-processing of long-read genetic and epigenetic data produced using either PacBio or Oxford Nanopore sequencing platforms. We demonstrate accurate DNA-m6A identification (>90% precision and recall) along >20 kilobase long DNA molecules with a ∼1,000-fold improvement in speed. In addition, we demonstrate that fibertools can readily integrate genetic and epigenetic data at single-molecule resolution, including the seamless conversion between molecular and reference coordinate systems, allowing for accurate genetic and epigenetic analyses of long-read data within structurally and somatically variable genomic regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实凝蕊发布了新的文献求助10
1秒前
2秒前
6666发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
小马甲应助墨墨采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Hayat应助科研通管家采纳,获得30
4秒前
orixero应助科研通管家采纳,获得30
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
且慢应助科研通管家采纳,获得20
4秒前
无花果应助科研通管家采纳,获得10
4秒前
4秒前
小b亮发布了新的文献求助10
4秒前
充电宝应助刘凯岳采纳,获得10
4秒前
M.发布了新的文献求助10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
ji_weiyi完成签到,获得积分10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
终梦应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
小二郎应助清欢采纳,获得10
5秒前
6秒前
丘比特应助yangyog采纳,获得20
7秒前
7秒前
8秒前
H0000发布了新的文献求助10
8秒前
SciGPT应助任性映秋采纳,获得10
9秒前
研友_VZG7GZ应助星辰不坠落采纳,获得10
10秒前
可能不够完成签到,获得积分10
10秒前
ceng发布了新的文献求助30
11秒前
852应助汉字采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468475
求助须知:如何正确求助?哪些是违规求助? 4571886
关于积分的说明 14332538
捐赠科研通 4498526
什么是DOI,文献DOI怎么找? 2464602
邀请新用户注册赠送积分活动 1453226
关于科研通互助平台的介绍 1427841