MFFCG – Multi feature fusion for hyperspectral image classification using graph attention network

高光谱成像 计算机科学 人工智能 模式识别(心理学) 卷积神经网络 图形 冗余(工程) 降维 自编码 深度学习 数据挖掘 理论计算机科学 操作系统
作者
Uzair Aslam Bhatti,Mengxing Huang,Harold Neira-Molina,Shah Marjan,Mehmood Baryalai,Hao Tang,Guilu Wu,Sibghat Ullah Bazai
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:229: 120496-120496 被引量:120
标识
DOI:10.1016/j.eswa.2023.120496
摘要

Classification methods that are based on hyperspectral images (HSIs) are playing an increasingly significant role in the processes of target detection, environmental management, and mineral mapping as a result of the fast development of hyperspectral remote sensing technology. Improving classification performance is still a significant problem, however, as a result of the high dimensionality and redundancy of hyperspectral image sets (HSIs), as well as the presence of class imbalance in hyperspectral datasets. In the past few years, convolutional neural networks (CNNs) and graph convolutional networks (GCNs) have achieved good results in HSI classification, but CNNs struggle to achieve good accuracy in low samples, while GCNs have a huge computational cost. To resolve these issues, this paper proposes a Multi-Feature Fusion of 3D-CNN and Graph Attention Network MFFCG. The algorithm consists of two elements: the 3D-CNN, which produces good classification for 3D HSI cube data, and GAT-based encoder and decoder modules that help in improving the classification accuracy of the 3D-CNN. Finally, the multiple features are merged with the help of two neural network models. We further develop two optimized GAT models named GAT1 and GAT2, which are used with different layers of 3D-CNN. Algorithms after merging with 3D-CNN are named MFFCG-1 and MFFCG-2, which produce better classification results then other developed methods. Experiments on three public HSI datasets show that the proposed methods perform better than other state-of-the-art methods using the limited training samples and in low classification time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助独特靖巧采纳,获得10
1秒前
2秒前
传奇3应助毅青6796采纳,获得10
2秒前
机灵含巧发布了新的文献求助10
2秒前
yvonnecao发布了新的文献求助10
3秒前
3秒前
李礼理锂鲤完成签到,获得积分10
4秒前
来篇nature发布了新的文献求助10
4秒前
dagangwood发布了新的文献求助100
5秒前
5秒前
HJH发布了新的文献求助10
6秒前
Orange应助九星采纳,获得10
6秒前
CipherSage应助雨sunsunsun采纳,获得10
6秒前
完美世界应助hhhwwwggg采纳,获得10
7秒前
bkagyin应助隐形晓夏采纳,获得10
8秒前
8秒前
timber发布了新的文献求助10
8秒前
细腻灯泡发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
crxxxx发布了新的文献求助10
12秒前
12秒前
科研通AI5应助宋jh采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
M1982发布了新的文献求助10
14秒前
Herisland发布了新的文献求助10
14秒前
独特靖巧发布了新的文献求助10
15秒前
躺平才有生活完成签到,获得积分10
16秒前
彭于晏应助科研通管家采纳,获得10
18秒前
烟花应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
18秒前
xzy998应助科研通管家采纳,获得10
18秒前
diuwaitao发布了新的文献求助10
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
wanci应助科研通管家采纳,获得10
18秒前
18秒前
如果多年后完成签到 ,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4314123
求助须知:如何正确求助?哪些是违规求助? 3833469
关于积分的说明 11993042
捐赠科研通 3473737
什么是DOI,文献DOI怎么找? 1904893
邀请新用户注册赠送积分活动 951670
科研通“疑难数据库(出版商)”最低求助积分说明 853181