Real-Time Semantic Segmentation: A brief survey and comparative study in remote sensing

计算机科学 分割 深度学习 推论 水准点(测量) 人工智能 遥感 数据挖掘 地图学 地质学 地理
作者
Clifford Broni-Bediako,Junshi Xia,Naoto Yokoya
出处
期刊:IEEE Geoscience and Remote Sensing Magazine [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 94-124 被引量:11
标识
DOI:10.1109/mgrs.2023.3321258
摘要

Real-time semantic segmentation of remote sensing imagery is a challenging task that requires a tradeoff between effectiveness and efficiency. It has many applications, including tracking forest fires, detecting changes in land use and land cover, crop health monitoring, and so on. With the success of efficient deep learning methods [i.e., efficient deep neural networks (DNNs)] for real-time semantic segmentation in computer vision, researchers have adopted these efficient DNNs in remote sensing image analysis. This article begins with a summary of the fundamental compression methods for designing efficient DNNs and provides a brief but comprehensive survey, outlining the recent developments in real-time semantic segmentation of remote sensing imagery. We examine several seminal efficient deep learning methods, placing them in a taxonomy based on the network architecture design approach. Furthermore, we evaluate the quality and efficiency of some existing efficient DNNs on a publicly available remote sensing semantic segmentation benchmark dataset, OpenEarthMap. The experimental results of an extensive comparative study demonstrate that most of the existing efficient DNNs have good segmentation quality, but they suffer low inference speed (i.e., a high latency rate), which may limit their capability of deployment in real-time applications of remote sensing image segmentation. We provide some insights into the current trend and future research directions for real-time semantic segmentation of remote sensing imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助安吉采纳,获得20
刚刚
科研通AI6应助HUM采纳,获得10
刚刚
ding应助高枕无忧采纳,获得10
刚刚
刚刚
1秒前
FashionBoy应助ddingk采纳,获得10
1秒前
黎明发布了新的文献求助30
2秒前
QQ完成签到,获得积分10
2秒前
年轻迪奥发布了新的文献求助10
2秒前
3秒前
30°C完成签到,获得积分20
3秒前
今后应助蒙面麦乐鸡采纳,获得10
3秒前
4秒前
怡然的幻灵完成签到,获得积分10
4秒前
5秒前
5秒前
无情的白桃完成签到,获得积分10
6秒前
木子完成签到,获得积分10
6秒前
花火完成签到,获得积分10
6秒前
红芍完成签到,获得积分10
6秒前
6秒前
6秒前
BINGBING1230发布了新的文献求助10
7秒前
7秒前
10秒前
10秒前
11秒前
11秒前
cc发布了新的文献求助10
11秒前
LMH发布了新的文献求助10
12秒前
12秒前
李勍完成签到,获得积分10
13秒前
Hello应助小曾最棒啦采纳,获得10
13秒前
13秒前
Tiejian完成签到,获得积分10
14秒前
呵呵喊我发布了新的文献求助10
14秒前
英俊的铭应助迅速的微笑采纳,获得10
14秒前
小胡爱学习完成签到,获得积分10
14秒前
xx发布了新的文献求助10
15秒前
岑文杰完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286781
求助须知:如何正确求助?哪些是违规求助? 4439406
关于积分的说明 13821497
捐赠科研通 4321398
什么是DOI,文献DOI怎么找? 2371854
邀请新用户注册赠送积分活动 1367418
关于科研通互助平台的介绍 1330879