Determination and classification of fetal sex on ultrasound images with deep learning

随机森林 人工智能 支持向量机 阿达布思 计算机科学 决策树 卷积神经网络 模式识别(心理学) 特征(语言学) 逻辑回归 学习迁移 深度学习 机器学习 超声科 深信不疑网络 人工神经网络 特征向量 集成学习 超声波 医学 特征提取 产前诊断 胎儿 统计分类 医学影像学
作者
Esra Sivari,Zafer Civelek,Seda Şahin
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122508-122508 被引量:6
标识
DOI:10.1016/j.eswa.2023.122508
摘要

Today, various prenatal diagnostic methods are used to determine the sex of the fetus. All of these medical methods require intervention by a specialist. The sensitivity of fetal ultrasonography (USG) scanning, which is the most commonly used diagnostic method, is variable and depends on the experience of the sonographer. In this study, an automatic, objective and reliable determination of fetal sex was aimed at using deep transfer learning techniques on USG images. For the study, a dataset containing 4400 fetal USG images, of which sexes were labeled by a gynecologist expert in the field, was created. In the first step, images were classified with fine-tuned convolutional neural networks. Following this classification, the fine-tuned DenseNet201 (ft-DenseNet201) network, which gave the most successful result with an accuracy of 0.9627, was used as the feature extractor network in the second step. Obtained features were classified by Logistic Regression (LR), Linear Support Vector Machine (LSVM), K-Nearest Neighbor (KNN), Decision Tree, Random Forest and AdaBoost algorithms. Among the 10 different classifiers used in the application, ft-DenseNet201 + LSVM (0.9782), ft-DenseNet201 + KNN (0.9727) and ft-DenseNet201 + LR (0.9718) algorithms gave very high accuracy values. This study can be evaluated as an automatic, objective, reliable and new medical method in determination of fetus sex; and can be used as an auxiliary system for specialists and patients by being integrated with USG devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碧蓝小鸭子关注了科研通微信公众号
1秒前
SciGPT应助644943434采纳,获得10
2秒前
2秒前
2秒前
子在完成签到,获得积分20
3秒前
3秒前
4秒前
莫妮卡卡完成签到,获得积分10
5秒前
科研通AI6应助雨晨采纳,获得30
6秒前
7秒前
zzx发布了新的文献求助10
7秒前
7秒前
南风歌初发布了新的文献求助10
8秒前
雪中漫步发布了新的文献求助10
8秒前
8秒前
学术圈边缘派遣员完成签到,获得积分10
8秒前
WN发布了新的文献求助10
11秒前
balabala发布了新的文献求助10
11秒前
12秒前
CodeCraft应助zlm1996采纳,获得10
12秒前
希望天下0贩的0应助why采纳,获得10
13秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
雨晨完成签到,获得积分20
16秒前
魏钦完成签到 ,获得积分10
17秒前
猪猪hero发布了新的文献求助10
18秒前
斯文败类应助江渡采纳,获得10
19秒前
元谷雪应助dj采纳,获得10
20秒前
Yanghongkai发布了新的文献求助10
20秒前
KiteRunner完成签到,获得积分10
20秒前
孟孟完成签到,获得积分10
21秒前
我是老大应助雪中漫步采纳,获得10
22秒前
文献啊文献完成签到,获得积分10
22秒前
Shengkun发布了新的文献求助100
22秒前
李浩溪完成签到,获得积分10
23秒前
wanci应助小赵采纳,获得10
24秒前
羊较瘦发布了新的文献求助10
24秒前
希望天下0贩的0应助Red-Rain采纳,获得10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553769
求助须知:如何正确求助?哪些是违规求助? 4638282
关于积分的说明 14652909
捐赠科研通 4580077
什么是DOI,文献DOI怎么找? 2512112
邀请新用户注册赠送积分活动 1487057
关于科研通互助平台的介绍 1457861