A missing manufacturing process data imputation framework for nonlinear dynamic soft sensor modeling and its application

软传感器 插补(统计学) 计算机科学 缺少数据 非线性系统 鉴别器 数据挖掘 灵活性(工程) 过程(计算) 机器学习 数学 统计 操作系统 物理 探测器 电信 量子力学
作者
Liang Ma,Mengwei Wang,Kaixiang Peng
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121428-121428 被引量:10
标识
DOI:10.1016/j.eswa.2023.121428
摘要

Data-driven soft sensors have been widely used in manufacturing processes for product quality prediction. However, in engineering practice, traditional linear soft sensors are considered to be insufficient when the manufacturing processes present high dimensionality as well as strong nonlinearity and dynamics. Moreover, due to the economic and technical limitations, missing data problem is widespread, which affects the generalization and accuracy of soft sensors. To overcome these issues, a missing manufacturing process data imputation framework is presented for nonlinear dynamic soft sensor modeling with the purpose of quality prediction. Specifically, the generate adversarial imputation network is introduced for data imputation, and the loss functions of discriminator and generator are reasonably designed. Subsequently, a mix gated unit combining bidirectional gated recurrent unit with bidirectional minimal gated unit is proposed for nonlinear dynamic soft sensor modeling aiming at improving the performance of quality prediction. Finally, the efficiency and flexibility of the proposed framework are demonstrated through a representative manufacturing process, the hot rolling process, in which the percentages of missing data are simulated from 20% to 80%. The ideal performance indicators, root mean square error and mean absolute error, have been obtained. It can be shown that the proposed framework can provide better prediction accuracy than the competitive methods in each scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分20
刚刚
2秒前
剪影改发布了新的文献求助10
2秒前
2秒前
科目三应助qiang采纳,获得10
3秒前
lucinda完成签到,获得积分10
3秒前
4秒前
4秒前
JIE发布了新的文献求助10
4秒前
lancekkk发布了新的文献求助10
5秒前
有思想发布了新的文献求助10
6秒前
包子完成签到,获得积分10
6秒前
恐龙让梨发布了新的文献求助10
7秒前
秋映菱发布了新的文献求助10
7秒前
郭京京发布了新的文献求助10
8秒前
9秒前
材料小白发布了新的文献求助10
9秒前
10秒前
ding应助珂儿采纳,获得10
10秒前
星辰大海应助hufan2441采纳,获得10
10秒前
11秒前
felix发布了新的文献求助20
11秒前
12秒前
12秒前
Trankhaiuy应助夕杳采纳,获得10
13秒前
博修发布了新的文献求助150
14秒前
huazi发布了新的文献求助10
14秒前
钱罐罐发布了新的文献求助10
14秒前
领导范儿应助lxu110采纳,获得10
15秒前
彭于晏应助HanFeiZi采纳,获得10
16秒前
脑洞疼应助恐龙让梨采纳,获得10
18秒前
雪原白鹿发布了新的文献求助10
18秒前
Adler完成签到,获得积分10
18秒前
20秒前
22秒前
凡平发布了新的文献求助10
22秒前
研友_V8Qmr8发布了新的文献求助10
23秒前
QSJ发布了新的文献求助10
24秒前
24秒前
梓树完成签到,获得积分10
25秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
求助→丁香园·用药助手2025版《临床决策疾病100问》的全套电子版PDF 1000
Astrochemistry 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3874835
求助须知:如何正确求助?哪些是违规求助? 3417208
关于积分的说明 10702631
捐赠科研通 3141569
什么是DOI,文献DOI怎么找? 1733387
邀请新用户注册赠送积分活动 836028
科研通“疑难数据库(出版商)”最低求助积分说明 782324