A missing manufacturing process data imputation framework for nonlinear dynamic soft sensor modeling and its application

软传感器 插补(统计学) 计算机科学 缺少数据 非线性系统 鉴别器 数据挖掘 灵活性(工程) 过程(计算) 机器学习 数学 统计 操作系统 物理 探测器 电信 量子力学
作者
Liang Ma,Mengwei Wang,Kaixiang Peng
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121428-121428 被引量:10
标识
DOI:10.1016/j.eswa.2023.121428
摘要

Data-driven soft sensors have been widely used in manufacturing processes for product quality prediction. However, in engineering practice, traditional linear soft sensors are considered to be insufficient when the manufacturing processes present high dimensionality as well as strong nonlinearity and dynamics. Moreover, due to the economic and technical limitations, missing data problem is widespread, which affects the generalization and accuracy of soft sensors. To overcome these issues, a missing manufacturing process data imputation framework is presented for nonlinear dynamic soft sensor modeling with the purpose of quality prediction. Specifically, the generate adversarial imputation network is introduced for data imputation, and the loss functions of discriminator and generator are reasonably designed. Subsequently, a mix gated unit combining bidirectional gated recurrent unit with bidirectional minimal gated unit is proposed for nonlinear dynamic soft sensor modeling aiming at improving the performance of quality prediction. Finally, the efficiency and flexibility of the proposed framework are demonstrated through a representative manufacturing process, the hot rolling process, in which the percentages of missing data are simulated from 20% to 80%. The ideal performance indicators, root mean square error and mean absolute error, have been obtained. It can be shown that the proposed framework can provide better prediction accuracy than the competitive methods in each scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助薯片采纳,获得10
1秒前
2秒前
共享精神应助静姝采纳,获得10
2秒前
畅快的小懒虫完成签到,获得积分10
2秒前
key完成签到,获得积分10
2秒前
隔壁老王完成签到,获得积分10
3秒前
汉堡包应助诺诺采纳,获得10
3秒前
小鹿斑比发布了新的文献求助10
3秒前
路路完成签到,获得积分10
4秒前
4秒前
yangmingyan完成签到 ,获得积分10
5秒前
zhuxiaonian完成签到,获得积分10
5秒前
apeng完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
flowerdrum完成签到,获得积分10
8秒前
向北完成签到,获得积分10
8秒前
8秒前
小马完成签到,获得积分10
8秒前
9秒前
里昂123完成签到,获得积分10
9秒前
starry完成签到,获得积分10
9秒前
cc完成签到,获得积分20
10秒前
TRY发布了新的文献求助10
10秒前
10秒前
科研小白应助小杨采纳,获得10
10秒前
zzzzzz完成签到,获得积分10
11秒前
Xx完成签到,获得积分10
11秒前
在水一方应助yao采纳,获得10
11秒前
是小胡ya完成签到,获得积分10
11秒前
充电宝应助执着的忆雪采纳,获得10
11秒前
12秒前
Jankin完成签到,获得积分10
12秒前
乾坤完成签到,获得积分10
12秒前
斯文败类应助刻苦的寒凝采纳,获得10
13秒前
13秒前
14秒前
cc完成签到,获得积分10
14秒前
cquank完成签到,获得积分10
14秒前
薯片发布了新的文献求助10
14秒前
AFM完成签到 ,获得积分10
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4243728
求助须知:如何正确求助?哪些是违规求助? 3777252
关于积分的说明 11858661
捐赠科研通 3431527
什么是DOI,文献DOI怎么找? 1883204
邀请新用户注册赠送积分活动 935109
科研通“疑难数据库(出版商)”最低求助积分说明 841552