Improving Fisheries Management through Deep learning based Automated fish counting

卷积神经网络 计算机科学 渔业管理 鱼类资源 人工智能 存货评估 渔业 分类 机器学习 人口 垂钓 生物 人口学 社会学
作者
Manikanta Sirigineedi,R. N. V. Jagan Mohan,Binod Kumar Sahu
标识
DOI:10.1109/icccnt56998.2023.10307016
摘要

The process of quantifying fish populations holds significant value in the realm of fisheries management, as it enables a precise evaluation of population sizes and facilitates comprehension of the current state of the fish stock. Nonetheless, the process of manually counting fish is demanding in terms of labor, time, and susceptible to inaccuracies. In order to tackle this issue, there have been advancements in automated fish counting techniques utilising computer vision and deep learning algorithms. The present study introduces an automated fish counting system based on deep learning, which employs a Convolutional neural network (CNN) to identify and enumerate the fish present in an image. The system under consideration has been assessed on a dataset comprising of underwater images that encompass diverse fish species. The findings of the evaluation indicate that the system attains a mean absolute error of 0.5 fish per image. The system under consideration exhibits a high degree of precision in quantifying fish populations across diverse settings, thereby presenting a viable avenue for enhancing fisheries governance. The system exhibits the ability to identify distinct fish species, rendering it appropriate for employment in fisheries management contexts, including stock evaluation and species categorization. In summary, the present study presents empirical support for the efficacy of the deep learning-based automated fish counting system, which has the capability to accurately quantify the quantity of fish in an image. This technology holds significant potential for enhancing fisheries management practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羁绊完成签到,获得积分10
1秒前
Ava应助MZ采纳,获得10
1秒前
科研通AI5应助祥子采纳,获得10
1秒前
深情安青应助奥丁蒂法采纳,获得10
2秒前
2秒前
自信依瑶发布了新的文献求助10
2秒前
YuanLeiZhang完成签到,获得积分10
3秒前
3秒前
JING发布了新的文献求助10
4秒前
6秒前
gfbh发布了新的文献求助10
8秒前
9秒前
烟花应助xiao采纳,获得10
11秒前
huai完成签到,获得积分10
12秒前
祥子发布了新的文献求助10
15秒前
18秒前
18秒前
星辰大海应助jackwang采纳,获得10
19秒前
21秒前
半。。完成签到,获得积分10
21秒前
zho应助VAE采纳,获得10
23秒前
科研通AI5应助调皮怜容采纳,获得10
23秒前
奥丁蒂法发布了新的文献求助10
23秒前
miaomiao发布了新的文献求助10
24秒前
英俊的铭应助阿飞采纳,获得10
24秒前
24秒前
复成完成签到 ,获得积分10
25秒前
半。。发布了新的文献求助10
25秒前
Jasper应助xzh采纳,获得10
25秒前
peaceone完成签到,获得积分10
25秒前
25秒前
自信依瑶完成签到,获得积分20
26秒前
27秒前
九离完成签到,获得积分10
27秒前
捣蛋发布了新的文献求助10
27秒前
29秒前
29秒前
qqcom发布了新的文献求助10
29秒前
思源应助卓大有采纳,获得10
31秒前
的速度发布了新的文献求助10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791401
求助须知:如何正确求助?哪些是违规求助? 3335858
关于积分的说明 10277662
捐赠科研通 3052572
什么是DOI,文献DOI怎么找? 1675134
邀请新用户注册赠送积分活动 803163
科研通“疑难数据库(出版商)”最低求助积分说明 761111