Global urban high-resolution land-use mapping: From benchmarks to multi-megacity applications

特大城市 计算机科学 土地利用 遥感 城市规划 比例(比率) 地理信息系统 土地利用规划 土地信息系统 地图学 地理 土地管理 土木工程 工程类 经济 经济
作者
Yanfei Zhong,Bowen Yan,Jingjun Yi,Ruiyi Yang,Mengzi Xu,Yu Su,Zhendong Zheng,Liangpei Zhang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:298: 113758-113758 被引量:13
标识
DOI:10.1016/j.rse.2023.113758
摘要

Timely and reliable land-use maps are of great importance in urban planning and environmental monitoring. With the rich spatial structure information, very high resolution (VHR) imagery is an important data source for identifying complex urban land use. However, the existing scene datasets and land-use mapping products based on VHR images have the following three problems: 1) accurate geographic boundaries of urban land parcels are lacking; 2) the category systems are inconsistent with the definitions in urban land use; and 3) it is difficult to achieve efficient and fully automated mapping in multiple cities. To tackle these problems, the GlobalUrbanNet-based automatic multi-city mapping and analysis (GAMMA) framework is proposed in this article. The GAMMA framework is made up of the GlobalUrbanNet (GUN) dataset, the multi-city fully automatic urban land-use mapping (AutoULUM) method, and the analysis of urban development patterns. Specifically, the large-scale 42-category fine-grained VHR urban land-use dataset—the GUN dataset—was constructed to deal with the above global urban land-use mapping problems, which contains 1,846,151 samples and 42 land-use categories covering six continents. The GUN dataset samples with land-use semantics and parcel boundaries were generated automatically based on the open-source area of interest (AOI) data from OpenStreetMap (OSM). In addition, the AutoULUM method is proposed to automate the process of OSM road network rectification and land parcel generation. On this basis, efficient and complete multi-city land-use maps can be produced using the GUN-pretrained scene classification models. To establish a benchmark for urban land-use classification, the representative urban land-use classification methods were evaluated on the GUN dataset. For further application, eight megacities from six continents were selected for automatic land-use mapping and analysis, i.e., Shanghai, Wuhan, and Chengdu in Asia, Helsinki in Europe, Nairobi in Africa, New York in North America, Rio de Janeiro in South America, and Sydney in Oceania. The results show that the models trained on the proposed GUN dataset have good generalizability in global urban areas, the AutoULUM method achieves efficient and fully automatic land-use mapping, and the GAMMA framework will help boost the coordinated development of multiple cities around the world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏州河发布了新的文献求助10
1秒前
2秒前
3秒前
Owen应助王肖采纳,获得10
4秒前
4秒前
一一发布了新的文献求助10
4秒前
xiaobin完成签到 ,获得积分10
5秒前
伶俐天蓉给伶俐天蓉的求助进行了留言
7秒前
在水一方应助liugm采纳,获得10
7秒前
luo发布了新的文献求助10
9秒前
YYY应助Rosin采纳,获得10
9秒前
Joaquin完成签到 ,获得积分10
9秒前
苏y完成签到,获得积分10
9秒前
星辰大海应助依瑶采纳,获得10
12秒前
嘻嘻哈哈发布了新的文献求助10
12秒前
14秒前
苏州河发布了新的文献求助10
14秒前
14秒前
14秒前
iwsaml发布了新的文献求助10
14秒前
nininidoc完成签到,获得积分10
16秒前
格格巫完成签到,获得积分20
16秒前
17秒前
luo完成签到,获得积分10
18秒前
啦啦啦发布了新的文献求助10
19秒前
季生发布了新的文献求助10
20秒前
wanci应助zhang采纳,获得30
20秒前
慈祥的绮发布了新的文献求助10
21秒前
ding应助淡定的定帮采纳,获得10
21秒前
22秒前
qin应助乖乖采纳,获得10
23秒前
不找了完成签到,获得积分10
26秒前
28秒前
NexusExplorer应助科研通管家采纳,获得10
31秒前
FashionBoy应助科研通管家采纳,获得10
31秒前
在水一方应助科研通管家采纳,获得10
31秒前
赘婿应助科研通管家采纳,获得10
31秒前
打打应助科研通管家采纳,获得10
31秒前
脑洞疼应助科研通管家采纳,获得10
31秒前
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787853
求助须知:如何正确求助?哪些是违规求助? 3333506
关于积分的说明 10262045
捐赠科研通 3049268
什么是DOI,文献DOI怎么找? 1673469
邀请新用户注册赠送积分活动 801965
科研通“疑难数据库(出版商)”最低求助积分说明 760440