已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Chapter 10 Geology and Metallogeny of Tungsten and Tin Deposits in China

地质学 矽卡岩 克拉通 成矿作用 地球化学 云英岩 古生代 矿化(土壤科学) 造山运动 白垩纪 锡石 矿床成因 古生物学 石英 构造学 黄铁矿 闪锌矿 流体包裹体 材料科学 冶金 土壤水分 土壤科学
作者
Jingwen Mao,Hegen Ouyang,Shiwei Song,M. Santosh,Songliu Yuan,Zhenhua Zhou,Wei Zheng,Huan Liu,Peng Liu,Yanbo Cheng,Maohong Chen
标识
DOI:10.5382/sp.22.10
摘要

Abstract Tungsten and Sn deposits in China are widely distributed in the South China block (i.e., Yangtze craton-Cathaysian block), Himalaya, Tibetan, Sanjiang, Kunlun, Qilian, Qinling, Dabie, and Sulu orogens, and Central Asian orogenic belt. Among these, the South China block hosts the majority of the mineralization with about 73% (9.943 million tonnes WO3) and 85% (6.561 million tonnes Sn) of the country’s total W and Sn resources, respectively. The W resource mainly occurs as skarn (63%), quartz-vein (17%), porphyry (17%), and greisen (3%) Sulu deposits, whereas Sn is present in skarn (81%), quartz veins that are typically tourmaline-bearing (6%), sulfide-rich veins or mantos (5%), greisen (5%), and porphyry (3%) Sulu deposits. The W and Sn mineralization formed during numerous events from Neoproterozoic to Paleocene with a peak in the period from the Middle Jurassic to Early Cretaceous, and with an uneven spatial and temporal distribution pattern. The Neoproterozoic Sn (W) deposits (850–790 Ma) occur on the southern and western margins of the Yangtze craton, the early Paleozoic W(Sn) deposits (450–410 Ma) are mainly distributed in the northern Qilian and the westernmost part of the eastern Kunlun orogens, the late Paleozoic Sn and W deposits (310–280 Ma) are mainly developed in the western part of the Central Asian orogenic belt, the Triassic W and Sn deposits (250–210 Ma) are widely scattered over the whole country, the Early Jurassic to Cretaceous W and Sn deposits (198–80 Ma) mainly occur in eastern China, and the late Early Cretaceous to Cenozoic Sn and W deposits (121–56 Ma) are exposed in the Himalaya-Tibetan-Sanjiang orogen. The petrologic characteristics of W- and Sn-related granitoids in China vary with the associated ore elements and can be divided into the Sn-dominant, W-dominant, W-Cu, and Mo-W (or W-Mo) groups. The granitoids associated with the Sn- and W-dominant magmatic-hydrothermal systems are highly fractionated S- and I-type, high-K calc-alkaline and (or) shoshonitic intrusions that show a metaluminous to peraluminous nature. They exhibit enrichments in F, B, Be, Rb, Nb, and Ta, depletions in Ti, Ca, Sr, Eu, Ba, and Zr, and strongly negative Eu anomalies. The granitoids associated with W-Cu and W-Mo deposits are of a high-K calc-alkaline to shoshonitic nature, metaluminous, depleted in Nb and Ta, and display weakly negative Eu anomalies. Granitoids associated with Sn- and W-dominant deposits are reduced, whereas those linked to W-Cu and Mo-W deposits are relatively more oxidized. The magma sources of W-dominant granitoids are ancient crust, whereas those connected with Sn, Mo-W, and W-Cu deposits are from variable mixing of ancient and juvenile crustal components. The spatial and temporal distribution pattern of W and Sn deposits in China is intimately related to the regional geodynamic evolution. The Neoproterozoic Sn deposits are associated with peraluminous, highly fractionated, and volatile-enriched (boron and fluorine) S-type granites sourced from the melting of an ancient crust in a postcollisional setting related to the assembly of the Rodinia supercontinent. The early Paleozoic W deposits are genetically associated with highly fractionated S-type granites formed during postcollisional events and were derived from the partial melting of a thickened continental crust in the context of Proto-Tethyan assembly. Granitoids associated with late Paleozoic Sn and W deposits were derived from the melting of an ancient and juvenile crust with I-type affinity associated with the closure of the Paleo-Asian Ocean. Although the Triassic W and Sn deposits are related to the assembly of Asian blocks within the Pangea supercontinent, their geologic settings are variable. Those in the South China block and the Himalaya-Tibetan-Sanjiang belt are associated with collision and magma derivation through the partial melting of a thickened continental crust, whereas in the Kunlun-Qilian-Qinling-Dabie-Sulu orogen and the Central Asian orogenic belt, a postcollisional extensional setting dominates. The Early Jurassic (198–176 Ma) W deposits, located in the northern part of northeast China, are associated with highly fractionated I-type granites derived from melting of juvenile crust and emplaced during the subduction of the Mongol-Okhotsk oceanic plate. The extensive group of Middle Jurassic to Cretaceous W and Sn deposits formed at two stages at 170 to 135 and 135 to 80 Ma. The former stage is associated with highly fractionated S- and I-type granites that are the products of partial melting of thickened crust with heat input possibly derived from a slab window associated with the Paleo-Pacific oceanic plate subduction beneath the Eurasian continent. The later stage is closely associated with NNE-trending strike-slip faults along the Eurasian continental margin and is coeval with the formation of rift basins, metamorphic core complexes, and porphyry-epithermal Cu-Au-Ag deposits. These processes, which were instrumental for the formation of a wide range of mineral deposits, can be ascribed to the regional lithospheric thinning and delamination of a thickened lithosphere and thermal erosion in a postsubduction extensional setting. The 121 to 56 Ma Sn deposits in the Himalaya-Tibetan-Sanjiang orogen are associated with S-type granite or I-type granodiorite emplacement in a back-arc extensional setting during Neo-Tethys plate subduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
6秒前
7秒前
8秒前
Wang完成签到,获得积分10
9秒前
清逸之风发布了新的文献求助10
9秒前
秋雪瑶应助唠叨的中道采纳,获得10
11秒前
11秒前
淡然平蓝发布了新的文献求助10
12秒前
21秒前
鱼儿游完成签到 ,获得积分10
22秒前
rhb发布了新的文献求助10
28秒前
Ava应助Q11采纳,获得10
29秒前
30秒前
31秒前
31秒前
哈哈哈发布了新的文献求助10
33秒前
34秒前
搜集达人应助rhb采纳,获得10
37秒前
123完成签到 ,获得积分10
38秒前
wbx关注了科研通微信公众号
40秒前
pluto应助爱听歌忆翠采纳,获得10
43秒前
超级千青完成签到,获得积分10
45秒前
45秒前
Xuezhuoxin发布了新的文献求助10
47秒前
aaa发布了新的文献求助10
49秒前
小雨完成签到 ,获得积分10
49秒前
49秒前
轻爱发布了新的文献求助10
50秒前
甜橙发布了新的文献求助10
52秒前
SOLOMON应助清逸之风采纳,获得10
53秒前
53秒前
eric发布了新的文献求助10
53秒前
无花果应助Ellery采纳,获得10
54秒前
轻爱完成签到,获得积分10
1分钟前
1分钟前
cctv18给felix的求助进行了留言
1分钟前
SciGPT应助aaa采纳,获得10
1分钟前
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Teaching Social and Emotional Learning in Physical Education 900
The three stars each : the Astrolabes and related texts 550
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
Chinese-English Translation Lexicon Version 3.0 500
少脉山油柑叶的化学成分研究 500
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2400109
求助须知:如何正确求助?哪些是违规求助? 2100825
关于积分的说明 5296461
捐赠科研通 1828480
什么是DOI,文献DOI怎么找? 911334
版权声明 560198
科研通“疑难数据库(出版商)”最低求助积分说明 487125