蒙特卡罗方法
离解(化学)
潜热
热力学
氢
熔化温度
量子
而量子蒙特卡罗
熔点
熔化曲线分析
内能
材料科学
相变
统计物理学
液态氢
化学
物理
物理化学
量子力学
数学
统计
复合材料
聚合酶链反应
生物化学
基因
作者
Shubhang Goswami,Scott Jensen,Yubo Yang,Markus Holzmann,Carlo Pierleoni,David M. Ceperley
摘要
We present results and discuss methods for computing the melting temperature of dense molecular hydrogen using a machine learned model trained on quantum Monte Carlo data. In this newly trained model, we emphasize the importance of accurate total energies in the training. We integrate a two phase method for estimating the melting temperature with estimates from the Clausius–Clapeyron relation to provide a more accurate melting curve from the model. We make detailed predictions of the melting temperature, solid and liquid volumes, latent heat, and internal energy from 50 to 180 GPa for both classical hydrogen and quantum hydrogen. At pressures of roughly 173 GPa and 1635 K, we observe molecular dissociation in the liquid phase. We compare with previous simulations and experimental measurements.
科研通智能强力驱动
Strongly Powered by AbleSci AI