Machine Learning‐Engineered Nanozyme System for Synergistic Anti‐Tumor Ferroptosis/Apoptosis Therapy

细胞凋亡 自噬 肿瘤微环境 癌症研究 联合疗法 程序性细胞死亡 计算机科学 化学 机器学习 肿瘤细胞 生物 生物信息学 生物化学
作者
Tianliang Li,Bin Cao,Tianhao Su,Lixing Lin,Dong Wang,Xinting Liu,Haoyu Wan,Haiwei Ji,Zi‐Xuan He,Yingying Chen,Lingyan Feng,Tong‐Yi Zhang
出处
期刊:Small [Wiley]
被引量:1
标识
DOI:10.1002/smll.202408750
摘要

Abstract Nanozymes with multienzyme‐like activity have sparked significant interest in anti‐tumor therapy via responding to the tumor microenvironment (TME). However, the consequent induction of protective autophagy substantially compromises the therapeutic efficacy. Here, a targeted nanozyme system (Fe‐Arg‐CDs@ZIF‐8/HAD, FZH) is shown, which enhances synergistic anti‐tumor ferroptosis/apoptosis therapy by leveraging machine learning (ML). A novel ML model, termed the sequential backward Tree‐Classifier for Gaussian Process Regression (TCGPR), is proposed to improve data pattern recognition following the divide‐and‐conquer principle. Based on this, a Bayesian optimization algorithm is employed to select candidates from the extensive search space. Leveraging this fresh material discovery framework, a novel strategy for enhancing nanozyme‐based tumor therapy, has been developed. The results reveal that FZH effectively exerts anti‐tumor effects by sequentially responding to the TME, having a cascade reaction to induce ferroptosis. Moreover, the endogenous elevation of high concentration nitric oxide (NO) serves as a direct mechanism for killing tumor cells while concurrently suppressing the protective autophagy induced by oxidative stress (OS), enhancing synergistic ferroptosis/apoptosis therapy. Overall, a novel strategy for improving nanozyme‐based tumor therapy has been proposed, underlying the integration of ML, experiments, and biological applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
柯一一应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
七月流火应助科研通管家采纳,获得50
3秒前
orixero应助科研通管家采纳,获得10
3秒前
柯一一应助科研通管家采纳,获得10
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
科目三应助科研通管家采纳,获得10
4秒前
4秒前
24发布了新的文献求助10
4秒前
4秒前
阿西吧发布了新的文献求助10
4秒前
Ricky发布了新的文献求助10
7秒前
8秒前
喵姐发布了新的文献求助10
8秒前
8秒前
Woaimama724发布了新的文献求助10
8秒前
8秒前
隐形曼青应助甜甜的亦寒采纳,获得10
9秒前
功必扬发布了新的文献求助10
9秒前
9秒前
发财小鱼完成签到 ,获得积分10
10秒前
默然的歌完成签到 ,获得积分10
11秒前
zhizhi完成签到,获得积分20
11秒前
烙饼完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966822
求助须知:如何正确求助?哪些是违规求助? 3512333
关于积分的说明 11162715
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432