Machine Learning‐Engineered Nanozyme System for Synergistic Anti‐Tumor Ferroptosis/Apoptosis Therapy

细胞凋亡 自噬 肿瘤微环境 癌症研究 联合疗法 程序性细胞死亡 计算机科学 化学 机器学习 肿瘤细胞 生物 生物信息学 生物化学
作者
Tianliang Li,Bin Cao,Tianhao Su,Lixing Lin,Dong Wang,Xinting Liu,Haoyu Wan,Haiwei Ji,Zi‐Xuan He,Yingying Chen,Lingyan Feng,Tong‐Yi Zhang
出处
期刊:Small [Wiley]
标识
DOI:10.1002/smll.202408750
摘要

Abstract Nanozymes with multienzyme‐like activity have sparked significant interest in anti‐tumor therapy via responding to the tumor microenvironment (TME). However, the consequent induction of protective autophagy substantially compromises the therapeutic efficacy. Here, a targeted nanozyme system (Fe‐Arg‐CDs@ZIF‐8/HAD, FZH) is shown, which enhances synergistic anti‐tumor ferroptosis/apoptosis therapy by leveraging machine learning (ML). A novel ML model, termed the sequential backward Tree‐Classifier for Gaussian Process Regression (TCGPR), is proposed to improve data pattern recognition following the divide‐and‐conquer principle. Based on this, a Bayesian optimization algorithm is employed to select candidates from the extensive search space. Leveraging this fresh material discovery framework, a novel strategy for enhancing nanozyme‐based tumor therapy, has been developed. The results reveal that FZH effectively exerts anti‐tumor effects by sequentially responding to the TME, having a cascade reaction to induce ferroptosis. Moreover, the endogenous elevation of high concentration nitric oxide (NO) serves as a direct mechanism for killing tumor cells while concurrently suppressing the protective autophagy induced by oxidative stress (OS), enhancing synergistic ferroptosis/apoptosis therapy. Overall, a novel strategy for improving nanozyme‐based tumor therapy has been proposed, underlying the integration of ML, experiments, and biological applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助多米采纳,获得30
1秒前
南桑发布了新的文献求助10
2秒前
2秒前
科研通AI5应助lw采纳,获得10
2秒前
2秒前
2秒前
3秒前
体贴半仙完成签到,获得积分10
3秒前
4秒前
Albert完成签到,获得积分10
5秒前
杨一发布了新的文献求助10
5秒前
帅哥的事情少管完成签到,获得积分10
5秒前
5秒前
liangliang发布了新的文献求助10
6秒前
爱幻想的青柠完成签到,获得积分10
6秒前
isfj发布了新的文献求助10
6秒前
7秒前
7秒前
李爱国应助小青蛙OA采纳,获得10
7秒前
科研通AI2S应助Yuna96采纳,获得10
7秒前
ShiRz发布了新的文献求助10
8秒前
8秒前
Jasper应助伶俐白凝采纳,获得10
9秒前
Su73发布了新的文献求助10
9秒前
9秒前
wu完成签到,获得积分10
10秒前
10秒前
多米完成签到,获得积分10
10秒前
李健应助啦啦啦采纳,获得10
11秒前
简单灵凡发布了新的文献求助10
11秒前
文静完成签到,获得积分10
11秒前
11秒前
大模型应助妖风采纳,获得10
12秒前
12秒前
12秒前
小糖完成签到,获得积分10
13秒前
14秒前
1900发布了新的文献求助10
14秒前
14秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793922
求助须知:如何正确求助?哪些是违规求助? 3338827
关于积分的说明 10292198
捐赠科研通 3055306
什么是DOI,文献DOI怎么找? 1676547
邀请新用户注册赠送积分活动 804557
科研通“疑难数据库(出版商)”最低求助积分说明 761950