Modulation of the Lattice Structure of CuFe/Copper Foam Catalysts by Doping with Bi to Improve the Efficiency of Electrocatalytic Ammonia Synthesis

催化作用 兴奋剂 氨生产 材料科学 化学工程 调制(音乐) 无机化学 化学 有机化学 光电子学 冶金 哲学 美学 工程类
作者
Chaofan Guo,Suyi Yang,Liting Wei,Zhiqiang Wang,Jinzhan Su,Liejin Guo
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
标识
DOI:10.1021/acssuschemeng.4c08210
摘要

Nitrogen reduction reaction (NRR) offers a sustainable alternative to the energy-intensive Haber–Bosch process for ammonia synthesis under ambient conditions while also mitigating the serious global warming impact of fossil fuels. However, the competing hydrogen evolution reaction remains a significant challenge in NRR systems. In this work, we propose Bi-doped CuFe nanoclusters loaded on 3D copper foams (CFs) as an enhanced N2 electrocatalyst for NRR. The Bi-doped catalyst exhibited superior NRR activity compared to the undoped counterpart, achieving a high ammonia yield of 216.1 μg h–1 cm–2 with a Faradaic efficiency of 46.8% at −0.4 V vs reversible hydrogen electrode. Importantly, the catalyst also showed good selectivity with minimal N2H4 byproduct generation and excellent stability. Bismuth incorporation induced lattice expansion and electronic defects, which in turn created structural defects and oxygen vacancies. These changes effectively promoted the adsorption and activation of N2 molecules. Comprehensive characterization revealed that Bi doping decreased the oxygen vacancy density in the bulk phase but increased the density on the surface. This phenomenon expanded the lattice spacing, inhibiting H* combination to produce H2, while the surface oxygen vacancies regulated the adsorption strength of N2 and NxHy intermediates during the electrocatalytic process. Density functional theory calculations further confirmed that Bi doping enhanced N2 adsorption and activation on the active sites, as well as the subsequent hydrogenation steps, leading to a lower energy barrier for the distal pathway to NH3 formation. Moreover, the Zn–N2 battery assembled with Bi–CuFe/CF shows an excellent power density of 14.01 mW cm–2, which enables simultaneous ammonia production and energy supply, which gives it significant potential in the field of sustainable energy. This work demonstrates a promising approach to developing efficient ammonia synthesis electrocatalysts by lattice structure modulation, contributing to the transition toward a low-carbon economy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助靓丽的战斗机采纳,获得10
刚刚
共享精神应助Bambi采纳,获得10
1秒前
无私语儿发布了新的文献求助10
1秒前
大意的千儿完成签到,获得积分20
1秒前
小李加油完成签到,获得积分10
2秒前
窝的小卷毛完成签到,获得积分10
3秒前
3秒前
高高的山兰完成签到 ,获得积分10
4秒前
下辈子还学医完成签到 ,获得积分20
4秒前
4秒前
orixero应助风中的向卉采纳,获得10
4秒前
吗喽完成签到,获得积分10
4秒前
2021发布了新的文献求助10
5秒前
winner完成签到,获得积分20
5秒前
段辉发布了新的文献求助10
5秒前
土豆条子完成签到,获得积分20
6秒前
木言完成签到,获得积分10
6秒前
Lone完成签到,获得积分10
6秒前
gxl完成签到,获得积分10
6秒前
科研通AI5应助予我渡北川采纳,获得10
6秒前
hhhhhh发布了新的文献求助10
6秒前
晚霞不晚完成签到,获得积分10
7秒前
Zyan发布了新的文献求助10
7秒前
7秒前
Lucas选李华完成签到 ,获得积分10
7秒前
河狸发布了新的文献求助10
7秒前
luoyulin完成签到,获得积分10
7秒前
7秒前
liuke完成签到,获得积分10
8秒前
晨曦暮雪发布了新的文献求助10
8秒前
8秒前
粥游天下完成签到,获得积分10
8秒前
yoon完成签到,获得积分10
8秒前
感动城发布了新的文献求助10
9秒前
爱啃大虾完成签到,获得积分10
9秒前
李璃发布了新的文献求助10
9秒前
鹿仙完成签到,获得积分10
9秒前
10秒前
科研通AI5应助鳗鱼落雁采纳,获得30
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
On translated images, stereotypes and disciplines 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834344
求助须知:如何正确求助?哪些是违规求助? 3376864
关于积分的说明 10495644
捐赠科研通 3096375
什么是DOI,文献DOI怎么找? 1704930
邀请新用户注册赠送积分活动 820309
科研通“疑难数据库(出版商)”最低求助积分说明 771966