FLDQN: Cooperative Multi-Agent Federated Reinforcement Learning for Solving Travel Time Minimization Problems in Dynamic Environments Using SUMO Simulation

强化学习 计算机科学 分布式计算 架空(工程) 交通拥挤 任务(项目管理) 人工智能 工程类 运输工程 系统工程 操作系统
作者
Abdul Wahab Mamond,Majid Kundroo,Seong-eun Yoo,Seonghoon Kim,Taehong Kim
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:25 (3): 911-911 被引量:1
标识
DOI:10.3390/s25030911
摘要

The increasing volume of traffic has led to severe challenges, including traffic congestion, heightened energy consumption, increased air pollution, and prolonged travel times. Addressing these issues requires innovative approaches for optimizing road network utilization. While Deep Reinforcement Learning (DRL)-based methods have shown remarkable effectiveness in dynamic scenarios like traffic management, their primary focus has been on single-agent setups, limiting their applicability to real-world multi-agent systems. Managing agents and fostering collaboration in a multi-agent reinforcement learning scenario remains a challenging task. This paper introduces a cooperative multi-agent federated reinforcement learning algorithm named FLDQN to address the challenge of agent cooperation by solving travel time minimization challenges in dynamic multi-agent reinforcement learning (MARL) scenarios. FLDQN leverages federated learning to facilitate collaboration and knowledge sharing among intelligent agents, optimizing vehicle routing and reducing congestion in dynamic traffic environments. Using the SUMO simulator, multiple agents equipped with deep Q-learning models interact with their local environments, share model updates via a federated server, and collectively enhance their policies using unique local observations while benefiting from the collective experiences of other agents. Experimental evaluations demonstrate that FLDQN achieves a significant average reduction of over 34.6% in travel time compared to non-cooperative methods while simultaneously lowering the computational overhead through distributed learning. FLDQN underscores the vital impact of agent cooperation and provides an innovative solution for enabling agent cooperation in a multi-agent environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子叶叶子完成签到,获得积分10
刚刚
科研通AI5应助Ly啦啦啦采纳,获得10
刚刚
哈哈哈完成签到,获得积分10
1秒前
1秒前
暖暖完成签到 ,获得积分10
2秒前
Hh完成签到 ,获得积分10
2秒前
许甜甜鸭应助CasterL采纳,获得20
2秒前
研友_ZeK0DL发布了新的文献求助10
2秒前
科研通AI5应助wang采纳,获得10
3秒前
3秒前
ZW完成签到 ,获得积分10
4秒前
今后应助Li采纳,获得10
4秒前
4秒前
Hello应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
不要引力完成签到,获得积分10
4秒前
许甜甜鸭应助科研通管家采纳,获得20
4秒前
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
iNk应助科研通管家采纳,获得10
5秒前
长安完成签到,获得积分10
5秒前
6秒前
华仔应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
lzz应助科研通管家采纳,获得10
6秒前
小白发布了新的文献求助10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
烟雨江南完成签到,获得积分10
6秒前
11应助殷超采纳,获得10
6秒前
6秒前
7秒前
wanci应助孙伟健采纳,获得10
8秒前
高分求助中
Mehr Wasserstoff mit weniger Iridium 1000
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834161
求助须知:如何正确求助?哪些是违规求助? 3376720
关于积分的说明 10494415
捐赠科研通 3096112
什么是DOI,文献DOI怎么找? 1704857
邀请新用户注册赠送积分活动 820189
科研通“疑难数据库(出版商)”最低求助积分说明 771885