FRT*: fast reactive tree for mobile robot replanning in unknown dynamic environments

移动机器人 计算机科学 树(集合论) 机器人 人工智能 数学 数学分析
作者
Zheng Li,Yanjie Chen,Zhixing Zhang,Hang Zhong,Yaonan Wang
标识
DOI:10.1108/ria-10-2024-0211
摘要

Purpose This study aims to introduce the fast reactive tree (FRT*) algorithm for enhancing replanning speed and reducing the overall cost of navigation in unknown dynamic environments. Design/methodology/approach FRT* comprises four key components: inverted tree build, convex hull construction, dead nodes inform activation and lazy-rewiring replanning. First, an initial path is found from the inverted tree where the valid structure is preserved to minimise re-exploration areas during the replanning phase. As the robot encounters environment changes, convex hulls are extracted to sparsely describe impacted areas. Next, the growth direction of the modified tree is biased by the inform activation of dead nodes to avoid unnecessary exploration. In the replanning phase, the tree structure is optimized using the proposed lazy-rewiring replanning to find a high-quality path with low computation burden. Findings A series of comprehensive simulation experiments demonstrate that the proposed FRT* algorithm can efficiently replan short-cost feasible paths in unknown dynamic environments. The differential wheeled mobile robot with varying reference linear velocities is used to validate the effectiveness and adaptability of the proposed strategy in real word scenarios. Furthermore, ablation studies are conducted to analyze the significance of the key components of FRT*. Originality/value The proposed FRT* algorithm introduces a novel approach to addressing the challenges of navigation in unknown dynamic environments. This capability allows mobile robots to safely and efficiently navigate through unknown and dynamic environments, making the method highly applicable to real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
XXX完成签到,获得积分10
2秒前
CFT完成签到,获得积分10
2秒前
很酷的妞子完成签到 ,获得积分10
2秒前
彭洪凯完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
CFT发布了新的文献求助10
5秒前
木辰发布了新的文献求助10
7秒前
8秒前
傲娇的青荷完成签到,获得积分10
8秒前
斯文败类应助Jun采纳,获得10
9秒前
在水一方应助大二郎采纳,获得10
9秒前
10秒前
10秒前
等待的凝芙完成签到,获得积分10
11秒前
澜冰完成签到,获得积分10
11秒前
11秒前
欢呼幼菱完成签到 ,获得积分10
12秒前
13秒前
徐佳乐完成签到,获得积分10
13秒前
sugkook发布了新的文献求助10
14秒前
14秒前
老实惊蛰完成签到 ,获得积分10
15秒前
风中芹菜完成签到,获得积分10
15秒前
风趣雅青发布了新的文献求助10
17秒前
peng发布了新的文献求助10
18秒前
所所应助大神水瓶座采纳,获得10
18秒前
19秒前
zzw18512467916完成签到,获得积分10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
妖娃娃应助科研通管家采纳,获得100
20秒前
从容芮应助科研通管家采纳,获得10
20秒前
Hello应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得10
20秒前
孙燕应助科研通管家采纳,获得10
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
从容芮应助科研通管家采纳,获得10
20秒前
情怀应助科研通管家采纳,获得10
20秒前
20秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867452
求助须知:如何正确求助?哪些是违规求助? 3409804
关于积分的说明 10665101
捐赠科研通 3133998
什么是DOI,文献DOI怎么找? 1728747
邀请新用户注册赠送积分活动 833077
科研通“疑难数据库(出版商)”最低求助积分说明 780550