亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting In-Hospital Mortality in Critical Orthopaedic Trauma Patients with Sepsis Using Machine Learning Models

机器学习 医学 逻辑回归 支持向量机 人工智能 队列 随机森林 决策树 布里氏评分 人工神经网络 急诊医学 计算机科学 内科学
作者
Ze Long,Si Hui Tan,Baisheng Sun,Yong Qin,Shengjie Wang,Zhencan Han,Tao Han,Feng Lin,Mingxing Lei
出处
期刊:Shock [Ovid Technologies (Wolters Kluwer)]
被引量:5
标识
DOI:10.1097/shk.0000000000002516
摘要

Purpose: This study aims to establish and validate machine learning-based models to predict death in hospital among critical orthopaedic trauma patients with sepsis or respiratory failure.Methods: This study collected 523 patients from the Medical Information Mart for Intensive Care database. All patients were randomly classified into a training cohort and a validation cohort. Six algorithms, including logistic regression (LR), extreme gradient boosting machine (eXGBM), support vector machine (SVM), random forest (RF), neural network (NN), and decision tree (DT), were used to develop and optimize models in the training cohort, and internal validation of these models were conducted in the validation cohort. Based on a comprehensive scoring system, which incorporated ten evaluation metrics, the optimal model was obtained with the highest scores. An artificial intelligence (AI) application was deployed based on the optimal model in the study.Results: The in-hospital mortality was 19.69%. Among all developed models, the eXGBM had the highest area under the curve (AUC) value (0.951, 95%CI: 0.934-0.967), and it also showed the highest accuracy (0.902), precise (0.893), recall (0.915), and F1 score (0.904). Based on the scoring system, the eXGBM had the highest score of 53, followed by the RF model (43) and the NN model (39). The scores for the LR, SVM, and DT were 22, 36, and 17, respectively. The decision curve analysis confirmed that both the eXGBM and RF models provided substantial clinical net benefits. However, the eXGBM model consistently outperformed the RF model across multiple evaluation metrics, establishing itself as the superior option for predictive modeling in this scenario, with the RF model as a strong secondary choice. The SHAP analysis revealed that SAPS II, age, respiratory rate, OASIS, and temperature were the most important five features contributing to the outcome.Conclusions: This study develops an artificial intelligence application to predict in-hospital mortality among critical orthopaedic trauma patients with sepsis or respiratory failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzhnb发布了新的文献求助10
11秒前
29秒前
42秒前
白华苍松发布了新的文献求助10
43秒前
46秒前
50秒前
懒回顾发布了新的文献求助10
51秒前
56秒前
懒回顾完成签到,获得积分10
1分钟前
1分钟前
忧郁丹彤完成签到,获得积分10
1分钟前
ZYP完成签到,获得积分10
1分钟前
1分钟前
1分钟前
忧郁丹彤发布了新的文献求助10
1分钟前
1分钟前
1分钟前
金沐栋完成签到,获得积分10
1分钟前
1分钟前
白华苍松发布了新的文献求助10
1分钟前
2分钟前
2分钟前
无极微光应助明理丹烟采纳,获得40
2分钟前
2分钟前
2分钟前
2分钟前
白华苍松发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
白华苍松发布了新的文献求助10
3分钟前
gwbk完成签到,获得积分10
3分钟前
3分钟前
tcklikai发布了新的文献求助20
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
呆萌冰彤完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509683
求助须知:如何正确求助?哪些是违规求助? 4604498
关于积分的说明 14489819
捐赠科研通 4539307
什么是DOI,文献DOI怎么找? 2487456
邀请新用户注册赠送积分活动 1469860
关于科研通互助平台的介绍 1442088