nnUNet-based Multi-modality Breast MRI Segmentation and Tissue-Delineating Phantom for Robotic Tumor Surgery Planning

分割 人工智能 手术计划 乳房磁振造影 计算机科学 成像体模 深度学习 模态(人机交互) 图像分割 放射科 乳腺癌 计算机视觉 医学 乳腺摄影术 癌症 内科学
作者
Motaz Alqaoud,John Plemmons,Eric Feliberti,Siqin Dong,Krishnanand N. Kaipa,Gábor Fichtinger,Yiming Xiao,Michel Audette
标识
DOI:10.1109/embc48229.2022.9871109
摘要

Segmentation of the thoracic region and breast tissues is crucial for analyzing and diagnosing the presence of breast masses. This paper introduces a medical image segmentation architecture that aggregates two neural networks based on the state-of-the-art nnU-Net. Additionally, this study proposes a polyvinyl alcohol cryogel (PVA-C) breast phantom, based on its automated segmentation approach, to enable planning and navigation experiments for robotic breast surgery. The dataset consists of multimodality breast MRI of T2W and STIR images obtained from 10 patients. A statistical analysis of segmentation tasks emphasizes the Dice Similarity Coefficient (DSC), segmentation accuracy, sensitivity, and specificity. We first use a single class labeling to segment the breast region and then exploit it as an input for three-class labeling to segment fatty, fibroglandular (FGT), and tumorous tissues. The first network has a 0.95 DCS, while the second network has a 0.95, 0.83, and 0.41 for fat, FGT, and tumor classes, respectively. Clinical Relevance—This research is relevant to the breast surgery community as it establishes a deep learning-based (DL) algorithmic and phantomic foundation for surgical planning and navigation that will exploit preoperative multimodal MRI and intraoperative ultrasound to achieve highly cosmetic breast surgery. In addition, the planning and navigation will guide a robot that can cut, resect, bag, and grasp a tissue mass that encapsulates breast tumors and positive tissue margins. This image-guided robotic approach promises to potentiate the accuracy of breast surgeons and improve patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助ANDRT采纳,获得10
刚刚
刚刚
cup发布了新的文献求助10
1秒前
班小班完成签到,获得积分10
2秒前
3秒前
风趣铅笔完成签到,获得积分10
4秒前
MYW完成签到,获得积分10
4秒前
5秒前
5秒前
狗头发布了新的文献求助10
5秒前
5秒前
5秒前
1aa完成签到,获得积分10
5秒前
6秒前
1012077054完成签到,获得积分10
7秒前
烟花应助白分白好心秦采纳,获得10
8秒前
斯文败类应助小太阳采纳,获得10
8秒前
夺将发布了新的文献求助20
8秒前
8秒前
拉格朗日柴犬完成签到,获得积分20
9秒前
我是老大应助dudu采纳,获得10
9秒前
9秒前
高大冷菱完成签到,获得积分10
9秒前
9秒前
10秒前
Williams完成签到,获得积分20
10秒前
瓶子里的大好人完成签到,获得积分10
10秒前
淡然宛凝发布了新的文献求助10
10秒前
11秒前
12356完成签到 ,获得积分10
11秒前
隐形曼青应助lisaltp采纳,获得10
11秒前
11秒前
ZYK发布了新的文献求助10
11秒前
八九不离十完成签到,获得积分10
12秒前
12秒前
12秒前
甜酒发布了新的文献求助10
14秒前
科研通AI5应助缓慢采柳采纳,获得10
14秒前
相濡以沫发布了新的文献求助10
15秒前
小黎快看发布了新的文献求助10
16秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807343
求助须知:如何正确求助?哪些是违规求助? 3352105
关于积分的说明 10357234
捐赠科研通 3068113
什么是DOI,文献DOI怎么找? 1684847
邀请新用户注册赠送积分活动 809977
科研通“疑难数据库(出版商)”最低求助积分说明 765838