可解释性
阶段(地层学)
肝细胞癌
人工智能
计算机科学
人工神经网络
机器学习
钥匙(锁)
医学
放射科
内科学
计算机安全
生物
古生物学
作者
Yuhang Zhou,Shu‐Wen Sun,Qiuping Liu,Xun Xu,Ya Zhang,Yu‐Dong Zhang
标识
DOI:10.1016/j.media.2022.102575
摘要
Microvascular invasion (MVI) has been clinically recognized as a prognostic factor for hepatocellular carcinoma (HCC) after surgical treatment. Detection of MVI before surgical operation greatly benefit patients’ prognosis and survival. Most of the existing methods for automatic diagnosis of MVI directly use deep neural networks to make predictions, which do not take into account clinical knowledge and lack of interpretability. To simulate the radiologists’ decision process, this paper proposes a Two-stage Expert-guided Diagnosis (TED) framework for MVI in HCC. Specifically, the first stage aims to predict key imaging attributes for MVI diagnosis, and the second stage leverages these predictions as a form of attention as well as soft supervision through a variant of triplet loss, to guide the fitting of the MVI diagnosis network. The attention and soft supervision are expected to jointly guide the network to learn more semantically correlated representations and thereafter increase the interpretability of the diagnosis network. Extensive experimental analysis on a private dataset of 466 cases has shown that the proposed method achieves 84.58% on AUC and 84.07% on recall, significantly exceeding the baseline methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI