Y-BGD: Broiler counting based on multi-object tracking

肉鸡 计算机科学 跟踪(教育) 对象(语法) 视频跟踪 计算机视觉 比例(比率) 人工智能 模式识别(心理学) 实时计算 数据挖掘 动物科学 心理学 教育学 生物 物理 量子力学
作者
Ximing Li,Zeyong Zhao,Jingyi Wu,Yongding Huang,Jiayong Wen,Shikai Sun,Huanlong Xie,Jian Sun,Yuefang Gao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:202: 107347-107347 被引量:30
标识
DOI:10.1016/j.compag.2022.107347
摘要

• Introducing Y-BGD framework for broiler counting in video with 98.131% accuracy. • Designing BGD algorithm to mitigate identity switching problem in MOT. • Constructing ChickenRun-2022 dataset with 144,001 frames in 283 videos. Automatic and accurate broiler counting plays a key role in the intelligent management of the cage-free broiler breeding industry. However, severe occlusion, similar appearance, variational posture and extremely crowded situation make it a very challenging task to accurately count cage-free broilers by applying the computer vision method. Currently, many broiler breeding enterprises have to count broilers manually, resulting in high management costs. To address these challenges, we propose a novel framework called YOLOX-Birth Growth Death (Y-BGD) for automatic and accurate cage-free broiler counting. The proposed method cooperated with improved multiple-object tracking algorithm to ease tracking loss and counting error by adopting BGD data association strategy. First, to evaluate the proposed framework, we constructed a large-scale dataset (namely ChickenRun-2022) that contains 283 videos, 343,657 label boxes, and over 144,000 frames with 14,373 chicken instances in total. Next, we conducted extensive experiments and analyses on this dataset and compared it with existing representative tracking algorithms to demonstrate the effectiveness of the proposed framework. Finally, the proposed framework yielded 98.131% counting accuracy, 0.1291 GEH, and 58.98 FPS speed on ChickenRun-2022. In conclusion, the proposed method provides an automatic approach to counting the number of cage-free broiler chickens in videos with higher speed and greater accuracy, which will benefit the broiler breeding industry and precision chicken management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得10
1秒前
ASA应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
终澈发布了新的文献求助20
1秒前
衣吾余应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
大个应助Zoe_Zhang采纳,获得10
2秒前
饶天源发布了新的文献求助10
3秒前
打打应助hjc641采纳,获得10
3秒前
英姑应助腻腻采纳,获得10
3秒前
4秒前
4秒前
6秒前
舒心的初晴完成签到 ,获得积分10
7秒前
细心的逍遥完成签到,获得积分10
8秒前
冰洁儿完成签到,获得积分10
10秒前
昏睡的洋葱完成签到,获得积分10
11秒前
玖凝发布了新的文献求助10
13秒前
段皖顺完成签到 ,获得积分10
13秒前
16秒前
17秒前
舟遥发布了新的文献求助10
21秒前
hjc641发布了新的文献求助10
22秒前
Churchill87426完成签到,获得积分10
23秒前
白术发布了新的文献求助100
25秒前
Phoenix ZHANG完成签到,获得积分10
26秒前
26秒前
希望天下0贩的0应助hjc641采纳,获得10
27秒前
我是牛马发布了新的文献求助10
29秒前
29秒前
大模型应助沐沐采纳,获得10
29秒前
小二郎应助追月的猪采纳,获得10
31秒前
葫芦娃发布了新的文献求助10
32秒前
32秒前
33秒前
xx发布了新的文献求助10
34秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4079587
求助须知:如何正确求助?哪些是违规求助? 3619095
关于积分的说明 11485151
捐赠科研通 3335315
什么是DOI,文献DOI怎么找? 1833496
邀请新用户注册赠送积分活动 902611
科研通“疑难数据库(出版商)”最低求助积分说明 821196