A Prior-information-guided Residual Diffusion Model for Multi-modal PET Synthesis from MRI

残余物 情态动词 计算机科学 扩散 人工智能 材料科学 算法 物理 高分子化学 热力学
作者
Zaixin Ou,Caiwen Jiang,Yongsheng Pan,Yuanwang Zhang,Zhiming Cui,Dinggang Shen
标识
DOI:10.24963/ijcai.2024/527
摘要

Alzheimer's disease (AD) leads to abnormalities in various biomarkers (i.e., amyloid-β and tau proteins), which makes PET imaging (which can detect these biomarkers) essential in AD diagnosis. However, the high radiation risk of PET imaging limits its scanning number within a short period, presenting challenges to the joint multi-biomarker diagnosis of AD. In this paper, we propose a novel unified model to simultaneously synthesize multi-modal PET images from MRI, to achieve low-cost and time-efficient joint multi-biomarker diagnosis of AD. Specifically, we incorporate residual learning into the diffusion model to emphasize inter-domain differences between PET and MRI, thereby forcing each modality to maximally reconstruct its modality-specific details. Furthermore, we leverage prior information, such as age and gender, to guide the diffusion model in synthesizing PET images with semantic consistency, enhancing their diagnostic value. Additionally, we develop an intra-domain difference loss to ensure that the intra-domain differences among synthesized PET images closely match those among real PET images, promoting more accurate synthesis, especially at the modality-specific information. Extensive experiments conducted on the ADNI dataset demonstrate that our method achieves superior performance both quantitatively and qualitatively compared to the state-of-the-art methods. All codes for this study have been uploaded to GitHub (https://github.com/Ouzaixin/ResDM).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
pengpur发布了新的文献求助10
1秒前
乐乐乐乐乐乐应助zy采纳,获得10
1秒前
隐形曼青应助落寞凌波采纳,获得10
1秒前
3秒前
3秒前
pluto应助红木白花采纳,获得100
4秒前
day_on发布了新的文献求助30
4秒前
5秒前
KerwinLLL发布了新的文献求助10
5秒前
李爱国应助否定之否定采纳,获得10
8秒前
8秒前
8秒前
FashionBoy应助玛卡没有巴卡采纳,获得10
9秒前
9秒前
栗栗完成签到 ,获得积分10
10秒前
勇敢的心发布了新的文献求助10
11秒前
谨慎的哈密瓜完成签到 ,获得积分10
13秒前
wqy完成签到 ,获得积分10
13秒前
阿凝应助邱佩群采纳,获得10
13秒前
13秒前
薛乎虚完成签到 ,获得积分10
13秒前
14秒前
涵泽发布了新的文献求助10
14秒前
15秒前
pengpur完成签到,获得积分10
16秒前
17秒前
柯亦云应助心灵美的初露采纳,获得10
19秒前
20秒前
22秒前
魔法大师完成签到,获得积分10
22秒前
Xiaopei完成签到,获得积分10
22秒前
23秒前
NexusExplorer应助天道酬勤采纳,获得10
24秒前
沈小小完成签到,获得积分10
24秒前
zzzz发布了新的文献求助10
24秒前
25秒前
简奥斯汀发布了新的文献求助30
26秒前
小草三心完成签到 ,获得积分10
26秒前
贰鸟完成签到,获得积分0
26秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4044305
求助须知:如何正确求助?哪些是违规求助? 3582113
关于积分的说明 11385405
捐赠科研通 3309190
什么是DOI,文献DOI怎么找? 1821364
邀请新用户注册赠送积分活动 893691
科研通“疑难数据库(出版商)”最低求助积分说明 815809