Multistage Spatial–Spectral Fusion Network for Spectral Super-Resolution

融合 分辨率(逻辑) 光谱分辨率 计算机科学 图像分辨率 遥感 人工智能 物理 地质学 谱线 天文 语言学 哲学
作者
Yaohang Wu,Renwei Dian,Shutao Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:2
标识
DOI:10.1109/tnnls.2024.3460190
摘要

Spectral super-resolution (SSR) aims to restore a hyperspectral image (HSI) from a single RGB image, in which deep learning has shown impressive performance. However, the majority of the existing deep-learning-based SSR methods inadequately address the modeling of spatial-spectral features in HSI. That is to say, they only sufficiently capture either the spatial correlations or the spectral self-similarity, which results in a loss of discriminative spatial-spectral features and hence limits the fidelity of the reconstructed HSI. To solve this issue, we propose a novel SSR network dubbed multistage spatial-spectral fusion network (MSFN). From the perspective of network design, we build a multistage Unet-like architecture that differentially captures the multiscale features of HSI both spatialwisely and spectralwisely. It consists of two types of the self-attention mechanism, which enables the proposed network to achieve global modeling of HSI comprehensively. From the perspective of feature alignment, we innovatively design the spatial fusion module (SpatialFM) and spectral fusion module (SpectralFM), aiming to preserve the comprehensively captured spatial correlations and spectral self-similarity. In this manner, the multiscale features can be better fused and the accuracy of reconstructed HSI can be significantly enhanced. Quantitative and qualitative experiments on the two largest SSR datasets (i.e., NTIRE2022 and NTIRE2020) demonstrate that our MSFN outperforms the state-of-the-art SSR methods. The code implementation will be uploaded at https://github.com/Matsuri247/MSFN-for-Spectral-Super-Resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鞋子亮发布了新的文献求助10
2秒前
噗愣噗愣地刚发芽完成签到 ,获得积分10
3秒前
123完成签到,获得积分20
3秒前
英姑应助单身的钧采纳,获得10
6秒前
sunyt完成签到,获得积分10
7秒前
英姑应助123采纳,获得10
9秒前
青鸟应助Zoeforever采纳,获得10
10秒前
10秒前
隐形曼青应助guaiweidou采纳,获得10
10秒前
Weiyu完成签到 ,获得积分10
11秒前
yaxizz发布了新的文献求助20
11秒前
14秒前
14秒前
机智雪晴完成签到,获得积分20
16秒前
灵长类发布了新的文献求助10
16秒前
简单的帽子完成签到,获得积分10
18秒前
无畏发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
maxiangyu发布了新的文献求助10
20秒前
李健的小迷弟应助wangli采纳,获得10
20秒前
21秒前
传奇3应助Zoeforever采纳,获得10
21秒前
22秒前
fan发布了新的文献求助10
23秒前
23秒前
bella发布了新的文献求助10
24秒前
24秒前
orixero应助科研通管家采纳,获得30
25秒前
Akim应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
天天快乐应助科研通管家采纳,获得10
25秒前
隐形雁玉应助科研通管家采纳,获得10
25秒前
上官若男应助科研通管家采纳,获得10
26秒前
香蕉觅云应助科研通管家采纳,获得10
26秒前
HZQ应助科研通管家采纳,获得10
26秒前
orixero应助科研通管家采纳,获得10
26秒前
Akim应助科研通管家采纳,获得10
26秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4170079
求助须知:如何正确求助?哪些是违规求助? 3705653
关于积分的说明 11693061
捐赠科研通 3391941
什么是DOI,文献DOI怎么找? 1860313
邀请新用户注册赠送积分活动 920305
科研通“疑难数据库(出版商)”最低求助积分说明 832649