清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel real-time model for predicting acute kidney injury in critically ill patients within 12 hours

病危 急性肾损伤 医学 重症监护医学 危重病 内科学
作者
Tao Sun,Xiaofang Yue,Xiao Chen,Tiancha Huang,Shaojun Gu,Yibing Chen,Yu Yang,Fang Qian,Chunmao Han,Xuanliang Pan,Xiao Lü,Libin Li,Yun Ji,Kang-song Wu,Hong‐Fu Li,Gong Zhang,Xiang Li,Jia Luo,Man Huang,Wei Cui
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
卷期号:40 (3): 524-536 被引量:2
标识
DOI:10.1093/ndt/gfae168
摘要

ABSTRACT Background A major challenge in the prevention and early treatment of acute kidney injury (AKI) is the lack of high-performance predictors in critically ill patients. Therefore, we innovatively constructed U-AKIpredTM for predicting AKI in critically ill patients within 12 h of panel measurement. Methods The prospective cohort study included 680 patients in the training set and 249 patients in the validation set. After performing inclusion and exclusion criteria, 417 patients were enrolled in the training set and 164 patients were enrolled in the validation set. AKI was diagnosed by Kidney Disease: Improving Global Outcomes (KDIGO) criteria. Results Twelve urinary kidney injury biomarkers (mALB, IgG, TRF, α1MG, NAG, NGAL, KIM-1, L-FABP, TIMP2, IGFBP7, CAF22, and IL-18) exhibited good predictive performance for AKI within 12 h in critically ill patients. U-AKIpredTM, combined with three crucial biomarkers (α1MG, L-FABP, and IGFBP7) by multivariate logistic regression analysis, exhibited better predictive performance for AKI in critically ill patients within 12 h than the other 12 kidney injury biomarkers. The area under the curve (AUC) of the U-AKIpredTM, as a predictor of AKI within 12 h, was 0.802 (95% CI: 0.771–0.833, P < .001) in the training set and 0.844 (95% CI: 0.792–0.896, P < .001) in the validation cohort. A nomogram based on the results of the training and validation sets of U-AKIpredTM was developed that showed optimal predictive performance for AKI. The fitting effect and prediction accuracy of U-AKIpredTM was evaluated by multiple statistical indicators. To provide a more flexible predictive tool, the dynamic nomogram (https://www.xsmartanalysis.com/model/U-AKIpredTM) was constructed using a web calculator. Decision curve analysis and a clinical impact curve were used to reveal that U-AKIpredTM with the three crucial biomarkers had a higher net benefit than these 12 kidney injury biomarkers, respectively. The net reclassification index and integrated discrimination index were used to improve the significant risk reclassification of AKI compared with the 12 kidney injury biomarkers. The predictive efficiency of U-AKIpredTM was better than the NephroCheck® when testing for AKI and severe AKI. Conclusion U-AKIpredTM is an excellent predictive model of AKI in critically ill patients within 12 h and would assist clinicians in identifying those at high risk of AKI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
jekyll发布了新的文献求助10
23秒前
29秒前
甘sir完成签到 ,获得积分10
33秒前
jekyll发布了新的文献求助10
38秒前
AbdoSpace发布了新的文献求助30
42秒前
开心每一天完成签到 ,获得积分10
48秒前
望向天空的鱼完成签到 ,获得积分10
55秒前
56秒前
57秒前
jekyll发布了新的文献求助10
1分钟前
1分钟前
1分钟前
jekyll发布了新的文献求助10
1分钟前
Dong完成签到 ,获得积分10
1分钟前
jekyll发布了新的文献求助10
1分钟前
1分钟前
1分钟前
jekyll发布了新的文献求助30
1分钟前
忘忧Aquarius完成签到,获得积分10
2分钟前
2分钟前
情怀应助sinan采纳,获得30
2分钟前
wsj完成签到,获得积分10
2分钟前
可夫司机完成签到 ,获得积分10
2分钟前
Heart_of_Stone完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
吴彦祖应助wsj采纳,获得10
2分钟前
sinan发布了新的文献求助30
2分钟前
2分钟前
kzxhql发布了新的文献求助10
2分钟前
creep2020完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
kzxhql完成签到,获得积分10
2分钟前
Thunnus001完成签到 ,获得积分10
3分钟前
缥缈书本完成签到 ,获得积分10
3分钟前
AbdoSpace发布了新的文献求助30
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488716
求助须知:如何正确求助?哪些是违规求助? 4587443
关于积分的说明 14413972
捐赠科研通 4518933
什么是DOI,文献DOI怎么找? 2476144
邀请新用户注册赠送积分活动 1461587
关于科研通互助平台的介绍 1434635