A new resampling algorithm for particle filters and its application in global localization within symmetric environments

颗粒过滤器 重采样 辅助粒子过滤器 算法 计算机科学 粒子(生态学) 数学优化 数学 滤波器(信号处理) 人工智能 卡尔曼滤波器 计算机视觉 集合卡尔曼滤波器 海洋学 地质学 扩展卡尔曼滤波器
作者
Seif Eddine Seghiri,Noura Mansouri,Ahmed Chemori
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
标识
DOI:10.1177/01423312241267042
摘要

Mobile robots are undergoing tremendous development, which makes them employed in many fields. In this area, global localization in symmetric indoor environments is a commonly encountered problem. One of the commonly used algorithms to solve it, is the Adaptive Monte Carlo Localization (AMCL), which is based on the particle filter algorithm. In this paper, we developed a new algorithm for resampling used within the Adaptive Monte Carlo Localization (AMCL) framework that we called Effective Samples Resampling (ESR). The proposed algorithm is based on a deterministic sample selection, and it is thoroughly tested in real time. Using a considerable amount of simulations, the efficacy and robustness of the AMCL using this technique are validated and compared to certain conventional approaches. They are also tested and validated in various real-time operating conditions using the Robot Operating System (ROS). The obtained results are quite satisfying in terms of resampling quality, implementation complexity, and convergence time when compared to random resampling approaches where a sample-based probability density given by high-quality sensors might destabilize localization. The global localization is well handled when the proposed algorithm is involved, compared to standard resampling algorithms that can often be overconfident and fail in some scenarios when there is a lot of symmetry in the considered map of the environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
慕青应助shishuang采纳,获得10
3秒前
3秒前
飞虎完成签到,获得积分10
6秒前
Akim应助VESong采纳,获得10
7秒前
8秒前
physic发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
棕榈发布了新的文献求助10
10秒前
852应助sinlar采纳,获得10
10秒前
量子星尘发布了新的文献求助30
10秒前
李爱国应助VESong采纳,获得10
11秒前
桐桐应助激情的不弱采纳,获得10
11秒前
13秒前
土豪的龙猫应助大树采纳,获得10
13秒前
茉莉花发布了新的文献求助10
14秒前
英俊的铭应助shishuang采纳,获得10
15秒前
123发布了新的文献求助10
16秒前
16秒前
18秒前
18秒前
老艺人完成签到,获得积分10
18秒前
nnmmuu完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
22秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
时生发布了新的文献求助10
24秒前
登登完成签到,获得积分10
24秒前
是达达哦完成签到,获得积分10
24秒前
Youzi完成签到,获得积分10
25秒前
26秒前
26秒前
26秒前
打打应助VESong采纳,获得10
27秒前
28秒前
幸福妙柏发布了新的文献求助10
28秒前
xiying完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785553
求助须知:如何正确求助?哪些是违规求助? 5688705
关于积分的说明 15467891
捐赠科研通 4914643
什么是DOI,文献DOI怎么找? 2645317
邀请新用户注册赠送积分活动 1593098
关于科研通互助平台的介绍 1547432