Recent advances in the construction strategy, functional properties, and biosensing application of self-assembled triangular unit-based DNA nanostructures

生物传感器 纳米技术 纳米结构 DNA 单位(环理论) 计算机科学 材料科学 生物 数学 遗传学 数学教育
作者
Mengxia Duan,Yu‐Ting Chang,Xiaowan Chen,Zhouping Wang,Shijia Wu,Nuo Duan
出处
期刊:Biotechnology Advances [Elsevier BV]
卷期号:76: 108436-108436 被引量:1
标识
DOI:10.1016/j.biotechadv.2024.108436
摘要

Research on self-assembled deoxyribonucleic acid (DNA) nanostructures with different shapes, sizes, and functions has recently made rapid progress owing to its biocompatibility, programmability and stability. Among these, triangular unit-based DNA nanostructures, which are typically multi-arm DNA tiles, have been widely applied because of their unique structural rigidity, spatial flexibility, and cell permeability. Triangular unit-based DNA nanostructures are folded from multiple single-stranded DNA using the principle of complementary base pairing. Its shape and size can be determined using pre-set scaffold strands, segmented base complementary regions, and sequence lengths. The resulting DNA nanostructures retain the desired sequence length to serve as binding sites for other molecules and obtain satisfactory results in molecular recognition, spatial orientation, and target acquisition. Therefore, extensive research on triangular unit-based DNA nanostructures has shown that they can be used as powerful tools in the biosensing field to improve specificity, sensitivity, and accuracy. Over the past few decades, various design strategies and assembly techniques have been established to improve the stability, complexity, functionality, and practical applications of triangular unit-based DNA nanostructures in biosensing. In this review, we introduce the structural design strategies and principles of typical triangular unit-based DNA nanostructures, including triangular, tetrahedral, star, and net-shaped DNA. We then summarize the functional properties of triangular unit-based DNA nanostructures and their applications in biosensing. Finally, we critically discuss the existing challenges and future trends.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KCl完成签到 ,获得积分10
1秒前
4秒前
学术老6完成签到 ,获得积分10
5秒前
5秒前
海带先生完成签到,获得积分10
6秒前
无奈的惜蕊完成签到,获得积分10
6秒前
大模型应助nav采纳,获得10
8秒前
科研通AI2S应助立军采纳,获得10
10秒前
科研通AI5应助立军采纳,获得10
10秒前
共享精神应助lx采纳,获得10
10秒前
钱多多完成签到,获得积分10
10秒前
11秒前
11秒前
cannon8发布了新的文献求助10
12秒前
立冬完成签到,获得积分10
13秒前
璇璇完成签到 ,获得积分10
13秒前
MH完成签到,获得积分10
14秒前
活力的小猫咪完成签到 ,获得积分10
15秒前
怕黑凤妖完成签到 ,获得积分10
15秒前
16秒前
kitty123完成签到,获得积分10
16秒前
勤恳的白亦完成签到 ,获得积分10
17秒前
joybee完成签到,获得积分0
17秒前
zhu完成签到 ,获得积分10
18秒前
bzc229完成签到,获得积分10
20秒前
20秒前
Jasper应助风趣的梦露采纳,获得10
21秒前
上下完成签到 ,获得积分10
21秒前
lx发布了新的文献求助10
21秒前
22秒前
nav发布了新的文献求助10
24秒前
美好雁荷完成签到,获得积分10
24秒前
24秒前
星火完成签到,获得积分10
25秒前
ljljljlj发布了新的文献求助10
26秒前
coolkid完成签到 ,获得积分10
28秒前
小草三心完成签到 ,获得积分10
28秒前
lx完成签到,获得积分10
28秒前
君莫笑发布了新的文献求助10
29秒前
畅快山兰完成签到 ,获得积分10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227030
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734