Logistic Regression Matching Pursuit algorithm for text classification

匹配追踪 算法 逻辑回归 计算机科学 水准点(测量) 人工智能 统计分类 分类器(UML) 模式识别(心理学) 机器学习 大地测量学 压缩传感 地理
作者
Qing Li,Shuai Zhao,Shancheng Zhao,Jinming Wen
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:277: 110761-110761 被引量:22
标识
DOI:10.1016/j.knosys.2023.110761
摘要

Text classification is a challenging problem due to the high dimensionality of the text, which can limit classification performance. The orthogonal matching pursuit (OMP) algorithm is one of the most popular sparse recovery algorithms. An OMP based text classification algorithm, called the Logistic-OMP algorithm, was recently proposed by Skianis et al.. Simulation tests indicate that Logistic-OMP has excellent performance in text dimensionality reduction. This paper optimizes the Logistic-OMP algorithm, and proposes a new text classification algorithm called the Logistic Regression Matching Pursuit (LRMP) algorithm. The LRMP algorithm defines a new loss function and residual update function. It requires only one iteration to solve the negative log likelihood minimization problem, and its classification performance is guaranteed by the strong Wolfe condition, which makes it optimizes the classification accuracy while significantly speeding up the training speed. Simulation tests on topic classification and sentiment analysis from 20Newsgroups, Amazon product reviews, and movie reviews datasets show that the LRMP algorithm has a shorter computation time of a single iteration than the Logistic-OMP algorithm, with a total training time of 8.08%–21.16% shorter than that of the Logistic-OMP algorithm, and the memory usage is 3.20%–6.21% lower than that of the Logistic-OMP algorithm. Furthermore, the average Accuracy and F1-Score of the LRMP algorithm are improved by 1.61%–26.55% and 1.83%–25.46%, respectively, compared with the benchmark classifier. Compared with the advanced classifiers (including Logistic-OMP), the average Accuracy and F1-Score of the LRMP algorithm are improved by 0.46%–8.97% and 0.57%–9.40%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lin完成签到 ,获得积分10
刚刚
ly完成签到,获得积分10
1秒前
1秒前
beyond-guo发布了新的文献求助30
2秒前
kp完成签到,获得积分10
2秒前
李健应助zxy采纳,获得10
2秒前
刻苦的秋柔完成签到,获得积分10
3秒前
坚强的秋白完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
暖小阳完成签到,获得积分10
4秒前
小吕发布了新的文献求助10
5秒前
5秒前
田様应助黄黄黄采纳,获得10
6秒前
欣喜的雨泽完成签到,获得积分20
6秒前
yalin完成签到,获得积分10
7秒前
7秒前
圈圈完成签到 ,获得积分10
7秒前
木木三发布了新的文献求助10
8秒前
小马甲应助一路向北采纳,获得10
8秒前
十元钱芝麻完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
yingying发布了新的文献求助10
9秒前
syx发布了新的文献求助10
10秒前
zxy完成签到,获得积分20
10秒前
11秒前
景穆发布了新的文献求助10
11秒前
11秒前
Sid完成签到,获得积分10
11秒前
12秒前
Sandstorm发布了新的文献求助10
12秒前
ferayn完成签到 ,获得积分10
12秒前
13秒前
13秒前
我是老大应助wumengxin采纳,获得10
13秒前
13秒前
动物园小科畜完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4673874
求助须知:如何正确求助?哪些是违规求助? 4052224
关于积分的说明 12531184
捐赠科研通 3745991
什么是DOI,文献DOI怎么找? 2068917
邀请新用户注册赠送积分活动 1098052
科研通“疑难数据库(出版商)”最低求助积分说明 978276