Elastic Full-Waveform Inversion Using a Physics-Guided Deep Convolutional Encoder–Decoder

波形 计算机科学 卷积神经网络 算法 反演(地质) 编码器 人工神经网络 合成数据 反问题 人工智能 数学 地质学 数学分析 电信 古生物学 雷达 构造盆地 操作系统
作者
Arnab Dhara,Mrinal K. Sen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:6
标识
DOI:10.1109/tgrs.2023.3294427
摘要

Elastic full waveform inversion can construct high-resolution P-wave, S-wave velocity and Density models in complex geological settings. However, several factors make the application of elastic FWI challenging. Elastic FWI is prone to the problem of cycle skipping phenomenon when low-frequency in the data are unavailable and the starting model is inaccurate. Multiparameter FWI also suffers from crosstalk issues due to coupling between different model parameters. We extend our physics guided deep convolutional encoder-decoder network to the problem of multiparameter elastic full waveform inversion. Our training is completely unsupervised. Our encoder-decoder which is composed of convolutional neural networks (CNNs) maps the multicomponent shot gathers to the target velocity models. The output from the network is given as input to partial differential equations which generate synthetic data. We compare the observed data against the synthetic data and then compute the misfit. We calculate the gradient of the misfit with respect to the model parameters and then use it to update the neural network weights. We note that the neural network generates velocity and density models that explain the observed data. A toy model, the marmousi model and left part of the BP salt model are used to demonstrate the effectiveness of the proposed approach. Finally, we explain the proposed approach's efficacy by examining the nature of the loss landscape of neural networks based full waveform inversion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
聪慧凡松发布了新的文献求助10
1秒前
1秒前
曾经的鸡翅完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
fanfanzzz完成签到 ,获得积分10
4秒前
4秒前
KT发布了新的文献求助10
4秒前
skyline完成签到,获得积分10
5秒前
5秒前
FashionBoy应助斯文明杰采纳,获得10
5秒前
Zz发布了新的文献求助10
6秒前
容与完成签到,获得积分10
6秒前
个性凡儿发布了新的文献求助20
6秒前
OxO发布了新的文献求助10
6秒前
款款发布了新的文献求助10
6秒前
7秒前
Duha完成签到,获得积分10
7秒前
爪子发布了新的文献求助10
7秒前
9秒前
隐形曼青应助笑点低涵雁采纳,获得10
9秒前
流年发布了新的文献求助10
9秒前
bkagyin应助早早采纳,获得30
10秒前
辉太狼完成签到,获得积分10
10秒前
wunai012321发布了新的文献求助10
10秒前
君君发布了新的文献求助10
10秒前
Akim应助yiyi037118采纳,获得10
11秒前
11秒前
顺利的夜梦完成签到 ,获得积分20
11秒前
阿喵发布了新的文献求助10
11秒前
11秒前
麦克斯韦的小妖完成签到,获得积分10
11秒前
12秒前
爪子完成签到,获得积分10
12秒前
清秀龙猫完成签到 ,获得积分10
12秒前
13秒前
Hcw0525发布了新的文献求助10
13秒前
13秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Knowledge management in the fashion industry 300
The world according to Garb 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816509
求助须知:如何正确求助?哪些是违规求助? 3359946
关于积分的说明 10406042
捐赠科研通 3078020
什么是DOI,文献DOI怎么找? 1690472
邀请新用户注册赠送积分活动 813786
科研通“疑难数据库(出版商)”最低求助积分说明 767857