清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Ambiguity-selective consistency regularization for mean-teacher semi-supervised medical image segmentation

模棱两可 分割 人工智能 计算机科学 一致性(知识库) 机器学习 正规化(语言学) 水准点(测量) 模式识别(心理学) 地理 大地测量学 程序设计语言
作者
Zhe Xu,Yixin Wang,Donghuan Lu,Xiangde Luo,Jiangpeng Yan,Yefeng Zheng,K.Y. Tong
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:88: 102880-102880 被引量:59
标识
DOI:10.1016/j.media.2023.102880
摘要

Semi-supervised learning has greatly advanced medical image segmentation since it effectively alleviates the need of acquiring abundant annotations from experts, wherein the mean-teacher model, known as a milestone of perturbed consistency learning, commonly serves as a standard and simple baseline. Inherently, learning from consistency can be regarded as learning from stability under perturbations. Recent improvement leans toward more complex consistency learning frameworks, yet, little attention is paid to the consistency target selection. Considering that the ambiguous regions from unlabeled data contain more informative complementary clues, in this paper, we improve the mean-teacher model to a novel ambiguity-consensus mean-teacher (AC-MT) model. Particularly, we comprehensively introduce and benchmark a family of plug-and-play strategies for ambiguous target selection from the perspectives of entropy, model uncertainty and label noise self-identification, respectively. Then, the estimated ambiguity map is incorporated into the consistency loss to encourage consensus between the two models' predictions in these informative regions. In essence, our AC-MT aims to find out the most worthwhile voxel-wise targets from the unlabeled data, and the model especially learns from the perturbed stability of these informative regions. The proposed methods are extensively evaluated on left atrium segmentation and brain tumor segmentation. Encouragingly, our strategies bring substantial improvement over recent state-of-the-art methods. The ablation study further demonstrates our hypothesis and shows impressive results under various extreme annotation conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
kenchilie完成签到 ,获得积分10
21秒前
高处X发布了新的文献求助10
24秒前
CipherSage应助科研通管家采纳,获得10
1分钟前
萝卜猪完成签到,获得积分10
1分钟前
生如夏花完成签到 ,获得积分10
3分钟前
3分钟前
传奇3应助科研通管家采纳,获得10
3分钟前
茉莉雨完成签到 ,获得积分10
3分钟前
4分钟前
鹿茸与共发布了新的文献求助10
4分钟前
Jayzie完成签到 ,获得积分10
4分钟前
xinjiasuki完成签到 ,获得积分10
4分钟前
CipherSage应助范范采纳,获得10
4分钟前
4分钟前
范范发布了新的文献求助10
5分钟前
CodeCraft应助科研通管家采纳,获得10
5分钟前
希望天下0贩的0应助范范采纳,获得10
5分钟前
Sunny完成签到,获得积分10
5分钟前
sailingluwl完成签到,获得积分10
5分钟前
wujiwuhui完成签到 ,获得积分10
5分钟前
紫熊完成签到,获得积分10
5分钟前
yzhilson完成签到 ,获得积分10
6分钟前
寻桃阿玉完成签到 ,获得积分10
6分钟前
Much完成签到 ,获得积分10
8分钟前
恶恶么v完成签到,获得积分10
8分钟前
9分钟前
666发布了新的文献求助10
9分钟前
9分钟前
英姑应助调皮醉波采纳,获得10
9分钟前
ma发布了新的文献求助10
9分钟前
科研通AI5应助大头采纳,获得10
10分钟前
10分钟前
10分钟前
范范发布了新的文献求助10
11分钟前
大头发布了新的文献求助10
11分钟前
11分钟前
调皮醉波发布了新的文献求助10
11分钟前
sowhat完成签到 ,获得积分10
11分钟前
田様应助666采纳,获得10
11分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827299
求助须知:如何正确求助?哪些是违规求助? 3369624
关于积分的说明 10456593
捐赠科研通 3089268
什么是DOI,文献DOI怎么找? 1699822
邀请新用户注册赠送积分活动 817501
科研通“疑难数据库(出版商)”最低求助积分说明 770251