Magnetic polycaprolactone microspheres: drug encapsulation and control

聚己内酯 药物输送 材料科学 纳米颗粒 磁性纳米粒子 微球 纳米技术 乳状液 水溶液 化学工程 超顺磁性 化学 聚合物 磁化 有机化学 复合材料 工程类 物理 磁场 量子力学
作者
Nesrine Abdelrehim El Gohary,Abdelrahman Mahmoud,Mohamed Ashraf Nazmy,Rami Zaabalawi,Loaa El Zahar,Islam S. M. Khalil,Mohamed E. Mitwally
出处
期刊:International Journal of Polymeric Materials [Taylor & Francis]
卷期号:73 (2): 143-153 被引量:5
标识
DOI:10.1080/00914037.2022.2132248
摘要

Targeted drug delivery (TDD) systems have several advantages, especially with drugs having toxic side effects such as lornoxicam (LX) which shows high hepatotoxicity and nephrotoxicity, especially with long-term use. This work represents an attempt to control magnetic microspheres encapsulating LX and magnetite nanoparticles (MNPs) for potential targeted drug delivery of LX. Superparamagnetic nanoparticles were fabricated via the co-precipitation method and together with LX were encapsulated into polycaprolactone (PCL) microspheres through an oil-in-water (O/W) emulsion solvent evaporation method. The effects of changing the amount of drug, MNPs, and volume of the aqueous phase were investigated by preparing several microsphere formulations. Increasing the amount of encapsulated MNPs increased the magnetization of the microspheres without affecting the morphology. Doubling the volume of the aqueous phase resulted in a higher encapsulation efficiency and drug loading; 83.9% and 10.7%, respectively, while increasing the amount of drug had a negative effect on both drug loading and encapsulation efficiency. Drug release from the microspheres was successfully achieved and showed a biphasic nature. A system of four planar coils was then used to magnetically control the movement of a cluster of capsules in a glycerin medium, as a simulation for the targeting process. The microspheres were successfully controlled to move in a U-turn path with sharp corners demonstrating their potential for TDD applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助羽翼采纳,获得10
刚刚
rachel03发布了新的文献求助20
刚刚
1秒前
li-naer发布了新的文献求助40
2秒前
4秒前
4秒前
5秒前
稳重的巨人完成签到,获得积分10
5秒前
乐乐应助白菜也挺贵采纳,获得10
5秒前
Kate完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
8秒前
luci发布了新的文献求助20
8秒前
8秒前
9秒前
feng关注了科研通微信公众号
9秒前
kingwill应助冷静书白采纳,获得20
9秒前
门板完成签到,获得积分10
10秒前
10秒前
羽翼发布了新的文献求助10
10秒前
guohuameike发布了新的文献求助10
11秒前
11秒前
ming发布了新的文献求助10
11秒前
lbma完成签到,获得积分10
13秒前
SYLH应助陈鹏采纳,获得10
14秒前
跑山猪发布了新的文献求助10
14秒前
15秒前
15秒前
JamesPei应助清欢采纳,获得20
15秒前
xixiz1024发布了新的文献求助10
15秒前
二手的科学家完成签到,获得积分10
16秒前
yoyo完成签到 ,获得积分10
17秒前
tongcc完成签到,获得积分10
17秒前
时光完成签到,获得积分20
18秒前
18秒前
缥缈的平露完成签到,获得积分10
18秒前
timo发布了新的文献求助10
19秒前
yangliu完成签到,获得积分10
19秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Building Quantum Computers 500
近赤外発光材料の開発とOLEDの高性能化 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3869461
求助须知:如何正确求助?哪些是违规求助? 3411558
关于积分的说明 10674643
捐赠科研通 3135898
什么是DOI,文献DOI怎么找? 1729918
邀请新用户注册赠送积分活动 833566
科研通“疑难数据库(出版商)”最低求助积分说明 780883