Surface quality optimization of laser cladding based on surface response and genetic neural network model

响应面法 材料科学 表面粗糙度 包层(金属加工) 涂层 Box-Behnken设计 田口方法 均方误差 实验设计 激光功率缩放 人工神经网络 正交数组 复合材料 激光器 光学 数学 计算机科学 统计 人工智能 物理
作者
Yuhang Zhang,Yifei Xu,Yaoning Sun,Wangjun Cheng
出处
期刊:Surface topography [IOP Publishing]
卷期号:10 (4): 044007-044007 被引量:18
标识
DOI:10.1088/2051-672x/aca3bd
摘要

Abstract The model was established to optimize the laser cladding process parameters, the coating surface topography can be predicted and controlled. Taguchi and Box-Behnken (BBD) experiments were used to carry out the experimental design of laser cladding multi-channel lap. 316 L stainless steel coating was cladded on the surface of 45 steel substrate. The genetic algorithm-back propagation (GA-BP) neural network and response surface methodology (RSM) models were established respectively. The prediction accuracy of the two models was compared. The coupling effect between cladding process and multi-channel lap forming quality was analyzed. The relationship between cladding process parameters, such as laser power, feeding speed, scanning speed and overlap ratio, and surface roughness of coating was studied. The experimental results show that: The root mean square error (RMSE) and absolute mean deviation (AAD) of the GA-BP model are smaller than those of the RSM model. The coefficient of determination R 2 of the GA-BP model is closer to 1 than that of the RSM model. The minimum roughness predicted by GA-BP model is 20.89 μ m, which is lower than that of RSM model (35.67 μ m). The final findings: in the optimization of process parameters of laser cladding, overlap ratio and scanning speed has significant effects on coating surface roughness. The GA-BP model of the coating surface roughness prediction accuracy is better than the RSM model. The prediction and control of the coating surface roughness are realized by GA-BP model, for the precise forming of the laser cladding coating surface, which provides theoretical basis and technological direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
William鉴哲完成签到,获得积分10
2秒前
xuexi发布了新的文献求助10
2秒前
Fine发布了新的文献求助10
2秒前
2秒前
2秒前
王伟发布了新的文献求助10
3秒前
3秒前
李珅玥发布了新的文献求助10
3秒前
3秒前
艾小矽完成签到,获得积分10
4秒前
ding应助生信狗采纳,获得10
4秒前
星辰大海应助喵了个咪采纳,获得10
4秒前
赘婿应助莫丹采纳,获得10
5秒前
CC发布了新的文献求助10
5秒前
普鲁卡因完成签到,获得积分10
6秒前
6秒前
Orange应助绝望的文盲采纳,获得10
6秒前
6秒前
orixero应助yuuuu采纳,获得10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
zhonglv7应助lzq采纳,获得10
7秒前
4892完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
打打应助sammy66采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
TY发布了新的文献求助10
9秒前
9秒前
better发布了新的文献求助30
9秒前
lx发布了新的文献求助10
9秒前
9秒前
10秒前
纪忆寒完成签到,获得积分10
10秒前
chx完成签到,获得积分20
10秒前
小二郎应助墨凡采纳,获得10
10秒前
希望天下0贩的0应助故里采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534