Experimental and Computational Vibration Analysis for Diagnosing the Defects in High Performance Composite Structures Using Machine Learning Approach

分层(地质) 有限元法 复合数 结构健康监测 结构工程 振动 情态动词 朴素贝叶斯分类器 材料科学 决策树 模态分析 纤维增强复合材料 计算机科学 复合材料 机器学习 工程类 支持向量机 声学 物理 生物 俯冲 古生物学 构造学
作者
J Lakshmipathi,S. Devaraj,Senthilkumar Marikkannan,G. Sakthivel,Sivakumar Ramasamy,R. Jegadeeshwaran,Yigeng Xu
出处
期刊:Applied sciences [MDPI AG]
卷期号:12 (23): 12100-12100 被引量:11
标识
DOI:10.3390/app122312100
摘要

Delamination in laminated structures is a concern in high-performance structural applications, which challenges the latest non-destructive testing techniques. This study assesses the delamination damage in the glass fiber-reinforced laminated composite structures using structural health monitoring techniques. Glass fiber-reinforced rectangular laminate composite plates with and without delamination were considered to obtain the forced vibration response using an in-house developed finite element model. The damage was diagnosed in the laminated composite using machine learning algorithms through statistical information extracted from the forced vibration response. Using an attribute evaluator, the features that made the greatest contribution were identified from the extracted features. The selected features were further classified using machine learning algorithms, such as decision tree, random forest, naive Bayes, and Bayes net algorithms, to diagnose the damage in the laminated structure. The decision tree method was found to be a computationally effective model in diagnosing the delamination of the composite structure. The effectiveness of the finite element model was further validated with the experimental results, obtained from modal analysis using fabricated laminated and delaminated composite plates. Our proposed model showed 98.5% accuracy in diagnosing the damage in the fabricated composite structure. Hence, this research work motivates the development of online prognostic and health monitoring modules for detecting early damage to prevent catastrophic failures of structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
梦启完成签到,获得积分10
刚刚
tuanheqi发布了新的文献求助20
1秒前
蓝天发布了新的文献求助10
1秒前
3秒前
Sing完成签到 ,获得积分10
3秒前
916应助珍宝采纳,获得10
5秒前
FashionBoy应助米酒汤圆采纳,获得10
5秒前
黑马发布了新的文献求助10
6秒前
SiShi发布了新的文献求助10
6秒前
哇samm完成签到 ,获得积分10
6秒前
toda_erica完成签到,获得积分10
8秒前
8秒前
好事成双层吉士汉堡完成签到 ,获得积分10
10秒前
333发布了新的文献求助10
10秒前
11秒前
何禾完成签到,获得积分20
12秒前
冷艳妙柏完成签到,获得积分10
13秒前
jasmineee发布了新的文献求助10
13秒前
茶米发布了新的文献求助10
15秒前
王娇发布了新的文献求助10
15秒前
15秒前
孙悦发布了新的文献求助50
16秒前
16秒前
王一生完成签到,获得积分10
16秒前
SciGPT应助琳io采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
Jasper应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
sleep应助科研通管家采纳,获得20
18秒前
BowieHuang应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
救驾来迟完成签到,获得积分10
18秒前
gyf应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536760
求助须知:如何正确求助?哪些是违规求助? 4624404
关于积分的说明 14591829
捐赠科研通 4564906
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480743
关于科研通互助平台的介绍 1451989