已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing single-cell classification accuracy using image conversion and deep learning.

生物 人工智能 模式识别(心理学) 上下文图像分类 深度学习 图像(数学) 机器学习 计算生物学 计算机科学
作者
Bingxi Gao,Huaxuan Wu,Z Du
出处
期刊:PubMed 卷期号:47 (3): 382-392
标识
DOI:10.16288/j.yczz.24-213
摘要

Single-cell transcriptome sequencing (scRNA-seq) is widely used in the fields of animal and plant developmental biology and important trait analysis by obtaining single-cell transcript abundance data in high throughput, which can deeply reveal cell types, subtype composition, specific gene markers and functional differences. However, scRNA-seq data are often accompanied by problems such as high noise, high dimensionality and batch effect, resulting in a large number of low-expressed genes and variants, which seriously affect the accuracy and reliability of data analysis. This not only increases the complexity of data processing, but also limits the effectiveness of feature selection and downstream analysis. Although several statistical inference and machine learning methods have been used to address these challenges, the existing methods still have limitations in cell type identification, feature selection, and batch effect correction, which are difficult to meet the needs of complex biological research. In this study, we proposes an innovative single-cell classification method, scIC (single-cell image classification), which converts scRNA-seq data into image form and combines it with deep learning techniques for cell classification. Through this image conversion, we are able to capture complex patterns in the data more efficiently, and then construct efficient classification models using convolutional neural networks (CNN) and residual networks (ResNet). After testing scRNA-seq data from four cell types (mouse skin basal cells, mouse lymphocytes, human neuronal cells, and mouse spinal cord cells), the accuracy of the classification models exceeded 94%, with the mouse skin basal cell dataset achieving a classification accuracy of 99.8% when using the ResNet50 model. These results indicate that image transformation of scRNA-seq data and combining it with deep learning techniques can significantly improve the classification accuracy, providing new ideas and effective tools for solving key challenges in single-cell data analysis. The code for this study is publicly available at: https://github.com/Bingxi-Gao/SCImageClassify.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助动听衬衫采纳,获得10
1秒前
Owen应助动听衬衫采纳,获得10
1秒前
bobo完成签到,获得积分10
5秒前
荣誉完成签到,获得积分10
6秒前
6秒前
lpk完成签到 ,获得积分10
8秒前
宣灵薇完成签到,获得积分0
8秒前
mang发布了新的文献求助10
9秒前
大力发布了新的文献求助10
11秒前
akun完成签到,获得积分10
14秒前
科研通AI6应助Chemberry采纳,获得10
14秒前
妖九笙完成签到 ,获得积分10
18秒前
18秒前
丘比特应助景__采纳,获得20
19秒前
舟舟完成签到 ,获得积分10
19秒前
小闫同学完成签到 ,获得积分10
20秒前
21秒前
ding应助明理笑旋采纳,获得10
21秒前
今后应助机灵的老李采纳,获得10
22秒前
iii发布了新的文献求助10
23秒前
xx完成签到 ,获得积分10
25秒前
田様应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
852应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
eric888应助科研通管家采纳,获得150
27秒前
TwentyNine完成签到,获得积分10
27秒前
eric888应助科研通管家采纳,获得150
27秒前
CodeCraft应助科研通管家采纳,获得10
27秒前
27秒前
小丁完成签到 ,获得积分10
29秒前
Thanks完成签到 ,获得积分10
30秒前
浮游应助大力采纳,获得10
30秒前
31秒前
英俊的铭应助大成采纳,获得10
31秒前
我是老大应助TwentyNine采纳,获得10
33秒前
34秒前
wnwn完成签到 ,获得积分10
36秒前
liruihan关注了科研通微信公众号
39秒前
ceeray23发布了新的文献求助20
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
The Chemical Industry in Europe, 1850–1914 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5160158
求助须知:如何正确求助?哪些是违规求助? 4354342
关于积分的说明 13558222
捐赠科研通 4198390
什么是DOI,文献DOI怎么找? 2302540
邀请新用户注册赠送积分活动 1302628
关于科研通互助平台的介绍 1247933