清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Enhancing Wellbore Transient Multiphase Flow Simulation with a Surrogate Model Utilizing Neural Differential Equations

井筒 计算机科学 瞬态(计算机编程) 瞬变流 瞬态分析 流量(数学) 多相流 人工神经网络 石油工程 控制理论(社会学) 机械 人工智能 瞬态响应 工程类 物理 电气工程 控制(管理) 浪涌 操作系统
作者
Jin Shu,Guoqing Han,Zhenduo Yue,Zhisheng Xing,Xin Wang,Long Peng,Junjian Li
标识
DOI:10.2118/225297-ms
摘要

Abstract Transient multiphase flow in wellbores is crucial for the production of oil and gas wells, impacting key areas such as gas well liquid loading prediction, hydrate development, as well as safe operation and risk management. Currently, traditional wellbore flow simulation relies heavily on commercial software like OLGA, which, although powerful, is predominantly based on numerical methods, thus resulting in high computational costs and slow response times. In the context of the rapid development of digital twin technology, this mode of simulation can no longer meet the needs for real-time data processing and swift decision-making. Moreover, as oil and gas field development increasingly moves towards integration, coupling wellbores with reservoirs becomes particularly necessary. However, traditional numerical simulation models struggle to address the mismatch in temporal and spatial scales between wellbores and reservoirs. Therefore, developing a new generation of high-fidelity, efficient models is crucial. At the same time, surrogate models based on machine learning techniques have shown significant research interest and practical value in fields such as computational fluid dynamics (CFD) and medical imaging, providing a viable research direction. Nevertheless, the application of such models in petroleum engineering, especially in wellbore flow simulation, is still in its early stages. This study introduces a surrogate model for transient multiphase flow in wellbores based on neural differential equations. Preliminary testing has shown that this model has high computational efficiency and accuracy, effectively supporting the application of big data onsite and facilitating rapid decision-making. Additionally, the model employs a rolling prediction method with the capability of adaptive time stepping, which significantly addresses the mismatch in time scales between wellbores and reservoirs, thus offering the potential for high-precision and efficient coupling of wellbore-reservoir systems. Although the model still requires further improvements, it has already demonstrated potential and broad application prospects in the simulation of wellbore transient flows. Future work will focus on optimizing and expanding the application of the model to further enhance its usability and effectiveness in actual oil and gas production.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
czj完成签到 ,获得积分10
2秒前
研友_Zzrx6Z完成签到,获得积分10
6秒前
葫芦芦芦完成签到 ,获得积分10
13秒前
zhangsan完成签到,获得积分10
40秒前
45秒前
Chloe完成签到 ,获得积分10
45秒前
勤奋高丽发布了新的文献求助10
51秒前
穆紫月懒阳阳完成签到,获得积分10
58秒前
Tong完成签到,获得积分0
1分钟前
happyVET完成签到,获得积分10
1分钟前
柯伊达完成签到 ,获得积分10
1分钟前
庄海棠完成签到 ,获得积分10
1分钟前
算命的完成签到,获得积分10
1分钟前
独摇之完成签到,获得积分10
1分钟前
LTJ完成签到,获得积分10
2分钟前
稻子完成签到 ,获得积分10
2分钟前
mymEN完成签到 ,获得积分10
2分钟前
幽默的南珍完成签到 ,获得积分10
2分钟前
逆时针完成签到,获得积分10
2分钟前
小豆芽完成签到,获得积分10
2分钟前
2分钟前
fang应助科研通管家采纳,获得10
3分钟前
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
xiaoyi完成签到 ,获得积分10
3分钟前
比比谁的速度快应助姚老表采纳,获得200
3分钟前
优秀的尔风完成签到,获得积分10
3分钟前
科目三应助KKIII采纳,获得10
3分钟前
午后狂睡完成签到 ,获得积分10
3分钟前
3分钟前
KKIII发布了新的文献求助10
3分钟前
3分钟前
岁岁发布了新的文献求助10
3分钟前
海阔天空完成签到 ,获得积分10
3分钟前
大水完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
玩命做研究完成签到 ,获得积分10
4分钟前
偷得浮生半日闲完成签到,获得积分10
4分钟前
4分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4054199
求助须知:如何正确求助?哪些是违规求助? 3592202
关于积分的说明 11413913
捐赠科研通 3318351
什么是DOI,文献DOI怎么找? 1825013
邀请新用户注册赠送积分活动 896271
科研通“疑难数据库(出版商)”最低求助积分说明 817418