Can small dense LDL cholesterol be estimated from the lipid profile?

估计 血脂谱 计算机科学 医学 胆固醇 生物信息学 内科学 工程类 生物 系统工程
作者
Tatsuya Sato,Marenao Tanaka,Masato Furuhashi
出处
期刊:Current Opinion in Lipidology [Lippincott Williams & Wilkins]
标识
DOI:10.1097/mol.0000000000000989
摘要

Purpose of review Small dense low-density lipoprotein cholesterol (sdLDL-C) is recognized for its strong atherosclerogenic potential. However, its direct measurement remains impractical in clinical settings due to its high cost, time constraints, and labor-intensive nature. This review discusses the benefits and limitations of estimating sdLDL-C using conventional lipid fractions, highlighting recent advancements in estimation methods. Recent findings Sampson et al. proposed a novel equation for estimating sdLDL-C based on conventional lipid parameters, offering a more accessible alternative to direct measurement. Recent studies, including ours, demonstrated that this estimation method achieves sufficiently high accuracy for overall application. However, its accuracy can be improved by incorporating machine learning. Furthermore, sdLDL-C estimated by Sampson's equation has been shown to be a superior risk marker for hypertension, an intermediate phenotype of atherosclerosis, and ischemic heart disease, a major cardiovascular event, compared to conventional lipid profiles alone, although further research is needed to determine whether estimated sdLDL-C is equivalent to directly measured sdLDL-C in risk assessment. Summary Estimated sdLDL-C presents a promising alternative to direct measurement. While estimated sdLDL-C levels can serve a risk marker for cardiovascular diseases, further research is needed to refine estimation models and explore their integration into clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慕青应助海的呼唤采纳,获得10
1秒前
娜行完成签到 ,获得积分10
4秒前
Marshall完成签到 ,获得积分10
7秒前
温柔乌发布了新的文献求助10
8秒前
上官若男应助liu采纳,获得10
8秒前
10秒前
云_123完成签到,获得积分10
12秒前
搜集达人应助勤奋冷之采纳,获得10
13秒前
13秒前
小李完成签到 ,获得积分20
14秒前
16秒前
不谢特发布了新的文献求助10
16秒前
香蕉觅云应助zhaimen采纳,获得10
16秒前
洁白的故人完成签到 ,获得积分10
18秒前
bingbing发布了新的文献求助10
19秒前
李狗蛋完成签到,获得积分10
20秒前
shinian发布了新的文献求助20
21秒前
22秒前
无花果应助bingbing采纳,获得10
22秒前
27秒前
逃不掉了发布了新的文献求助10
29秒前
30秒前
FashionBoy应助科研通管家采纳,获得10
30秒前
情怀应助科研通管家采纳,获得10
30秒前
乐乐应助科研通管家采纳,获得10
30秒前
星辰大海应助科研通管家采纳,获得10
30秒前
无花果应助科研通管家采纳,获得10
30秒前
完美世界应助科研通管家采纳,获得10
30秒前
斯文败类应助科研通管家采纳,获得10
30秒前
我是老大应助科研通管家采纳,获得10
30秒前
科目三应助科研通管家采纳,获得10
30秒前
Even完成签到 ,获得积分10
30秒前
生动梦松应助科研通管家采纳,获得30
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
科研通AI5应助Dr.coco采纳,获得30
31秒前
bingbing完成签到,获得积分10
31秒前
温柔乌完成签到,获得积分10
32秒前
Blassom发布了新的文献求助10
32秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4721777
求助须知:如何正确求助?哪些是违规求助? 4081463
关于积分的说明 12621992
捐赠科研通 3786921
什么是DOI,文献DOI怎么找? 2091462
邀请新用户注册赠送积分活动 1117476
科研通“疑难数据库(出版商)”最低求助积分说明 994303