材料科学
原子单位
原子层沉积
扫描透射电子显微镜
半导体
薄膜
电子束处理
晶界
光电子学
微晶
纳米技术
电子
带隙
偶极子
化学物理
透射电子显微镜
微观结构
复合材料
物理
有机化学
化学
冶金
量子力学
作者
Francisco Lagunas,Li Shi,Zachary D. Hood,Jessica C. Jones
标识
DOI:10.1021/acsami.5c04571
摘要
Understanding the atomic structure and defect characteristics of ZnO thin films is crucial for optimizing their electronic properties and performance in advanced applications. Here, we investigate the atomic structure and defect characteristics of atomic layer deposition (ALD)-grown ZnO thin films by using aberration-corrected scanning transmission electron microscopy (STEM). Atomic-resolution imaging identifies prevalent stacking faults, dipole disorder, and various grain boundary types, which are believed to influence the electronic properties of ZnO. Additionally, real-time electron beam exposure experiments demonstrate structural transformations, including crystal growth and surface rearrangements. These findings provide insights into the growth mechanisms of ALD ZnO under high-energy electron irradiation conditions, an important finding for the use of polycrystalline ZnO wide bandgap semiconductors in space-like conditions. Our results underscore the capability of STEM in directly visualizing and quantifying atomic-scale defects and beam-induced transformations in radiation-resistant ZnO.
科研通智能强力驱动
Strongly Powered by AbleSci AI