Anion Injection in Dielectric Ecosystems to Construct Dual Built‐in Electric Fields for Efficient Electromagnetic Response

材料科学 构造(python库) 电介质 对偶(语法数字) 离子 电场 生态系统 工程物理 光电子学 计算机科学 生态学 物理 生物 量子力学 艺术 文学类 程序设计语言
作者
Jiawei Lin,Hui‐Liang Wen,Zhaobo Feng,Ruizhe Hu,Liping Wu,Chongbo Liu,Sen Lin,Yuhui Peng,Yifang Liu,Renchao Che
出处
期刊:Advanced Functional Materials [Wiley]
被引量:1
标识
DOI:10.1002/adfm.202505381
摘要

Abstract Constructing built‐in electric fields is a proven method to enhance dielectric loss mechanisms by amplifying interfacial polarization. However, a single built‐in electric field is often insufficient for significantly improving electromagnetic (EM) polarization loss. To address this, dielectric ecosystems are developed utilizing an anion injection strategy to regulate work function differences. Through first‐principles calculations, the directional transfer of space charges at multi‐heterogeneous interfaces is visualized. The resulting work function differences spontaneously establish a dual built‐in electric field (DBIEF) structure, which substantially enhances EM polarization loss and EM wave absorption capabilities. Furthermore, an equivalent circuit model elucidates the competition between polarization and conduction species in the EM loss mechanism. This competition results in exceptional EM wave absorption performance, achieving a minimum reflection loss ( RL min ) of −58.71 dB and an effective absorption bandwidth (EAB) of 7.92 GHz. Computer simulation technology demonstrates a maximum radar cross‐section (RCS) reduction of 39.18 dB·m 2 . Additionally, the unique hollow‐truncated‐pyramid metamaterial design exhibits high incidence angle insensitivity (60°) over 2–38 GHz, and significant broadband absorption across 2–40 GHz. This comprehensive work offers novel insights into the structural design of EM nanomaterials and introduces a new dielectric ecosystem to elucidate the DBIEF loss mechanism for efficient EM wave absorption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助sunly采纳,获得10
刚刚
天凉王破完成签到 ,获得积分10
刚刚
SciGPT应助宏hong采纳,获得10
1秒前
2秒前
2秒前
2秒前
阅读机发布了新的文献求助10
2秒前
2秒前
2秒前
鲤鱼盼望完成签到,获得积分10
3秒前
青山完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
鳗鱼涵梅发布了新的文献求助10
6秒前
meng完成签到,获得积分10
6秒前
於成协完成签到,获得积分10
6秒前
上官若男应助丁峰采纳,获得10
7秒前
SciGPT应助鲤鱼盼望采纳,获得10
7秒前
大模型应助Lyyyw采纳,获得30
7秒前
yuan发布了新的文献求助10
7秒前
7秒前
lishunzcqty发布了新的文献求助10
8秒前
8秒前
青山发布了新的文献求助10
10秒前
10秒前
宵宫发布了新的文献求助10
12秒前
12秒前
小蘑菇应助nowxious采纳,获得10
13秒前
侏罗纪世界完成签到,获得积分10
14秒前
TEMPO发布了新的文献求助10
15秒前
帅气雪糕发布了新的文献求助10
16秒前
xxy完成签到,获得积分10
17秒前
水蜜桃幽灵完成签到,获得积分10
18秒前
liuxian完成签到,获得积分10
18秒前
终梦应助pangpang采纳,获得10
19秒前
19秒前
19秒前
20秒前
22秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817454
求助须知:如何正确求助?哪些是违规求助? 3360792
关于积分的说明 10409392
捐赠科研通 3078887
什么是DOI,文献DOI怎么找? 1690844
邀请新用户注册赠送积分活动 814169
科研通“疑难数据库(出版商)”最低求助积分说明 768060