A Hybrid SEM-ANN Approach to Investigate the Internet Addiction Among University Students Based on Psychological Resilience Theory and Cognitive-Behavioral Theory

上瘾 心理学 互联网 结构方程建模 心理弹性 社会支持 控制(管理) 社会心理学 应用心理学 精神科 万维网 人工智能 计算机科学 机器学习
作者
Jinyu Li,Ling Huang,Minqi Dun
出处
期刊:Psychological Reports [SAGE Publishing]
标识
DOI:10.1177/00332941251330549
摘要

The internet is now essential in college students’ lives, but its overuse is turning into a worldwide issue, notably with rising internet addiction among students. Earlier studies have mainly explored the risk factors of internet addiction, yielding various findings. This study aims to delve into the key factors affecting internet addiction among university students by integrating the theory of psychological resilience with cognitive-behavioral theory. It thoroughly analyzes how self-control, emotional regulation, social support, perceived stress, and psychological resilience influence internet addiction and explores their interactions and underlying mechanisms. The study conveniently selected 999 university students for a survey to measure their self-reported ratings on six constructs: self-control, emotional regulation, perceived stress, psychological resilience, social support, and internet addiction. Employing a Structural Equation Modeling - Artificial Neural Network (SEM-ANN) approach, the study unveiled complex and non-linear relationships between predictors and internet addiction. Results indicated that self-control and psychological resilience significantly reduce internet addiction, while perceived stress notably increases the risk. Notably, emotional regulation and social support did not directly lower the risk of internet addiction. Further analysis revealed that psychological resilience plays a mediating role between self-control, emotional regulation, social support, and internet addiction. Additionally, multilayer perceptron analysis of normalized importance showed self-control as the most critical predictive factor (100%), followed by emotional regulation (9.1%), social support (8.4%), and psychological resilience (5.4%). The study contributes theoretical and practical insights into internet addiction among university students.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南风发布了新的文献求助10
2秒前
狗狗完成签到 ,获得积分10
3秒前
FashionBoy应助微兔小妹采纳,获得10
4秒前
4秒前
6秒前
Hello应助爱爱采纳,获得10
6秒前
顺利道之发布了新的文献求助10
6秒前
科研通AI5应助偏翩采纳,获得10
7秒前
科研通AI5应助雨淋沐风采纳,获得10
7秒前
7秒前
慕青应助FCL采纳,获得10
8秒前
鲨鱼鱼完成签到,获得积分10
8秒前
9秒前
轻松曲奇给轻松曲奇的求助进行了留言
10秒前
尤海露发布了新的文献求助10
11秒前
烟花应助wuchun采纳,获得10
11秒前
11秒前
JamesPei应助科研通管家采纳,获得10
12秒前
12秒前
13秒前
CodeCraft应助suleisusu采纳,获得30
13秒前
orixero应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
14秒前
wanci应助WANG采纳,获得10
14秒前
14秒前
14秒前
14秒前
杰尼龟006发布了新的文献求助10
14秒前
pengx完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
deluohaida发布了新的文献求助10
15秒前
科研通AI5应助偏翩采纳,获得10
16秒前
高是个科研狗完成签到 ,获得积分10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814820
求助须知:如何正确求助?哪些是违规求助? 3358947
关于积分的说明 10398754
捐赠科研通 3076401
什么是DOI,文献DOI怎么找? 1689803
邀请新用户注册赠送积分活动 813303
科研通“疑难数据库(出版商)”最低求助积分说明 767599