Temporal analysis of users’ engagements in CDC public health information on Twitter/X

计算机科学 互联网隐私 万维网
作者
Jin Zhang,Jianyao Chen,Yen Yung Geszvain,Chunxiu Qin
出处
期刊:Online Information Review [Emerald Publishing Limited]
标识
DOI:10.1108/oir-11-2024-0722
摘要

Purpose The objective of this paper is to investigate the temporal patterns, trends and valuable insights regarding user engagements in public health information diffusion from the Centers for Disease Control and Prevention (CDC) channel on Twitter/X. Design/methodology/approach The health information regression models on the 10 CDC channels on Twitter/X were developed by applying regression analysis methods. The user engagement velocities were explored, and the half-life of user engagement and response times was examined. Findings The findings show that logarithmic regression models were the most suitable for predicting user engagement types. The most frequent user engagement types on Twitter/X were views, followed by likes and retweets. Regarding average user engagement velocity, views ranked first, followed by likes, retweets, replies, quotes and bookmarks in that order. The half-life values for various user engagement types ranged from 52.68 to 54.60 days. The study also revealed response times for different user engagement types: bookmarks (1.53 days), likes (1.05 days), quotes (2.22 days), replies (1.21 days), retweets (1.07 days) and views (0.71 days). Social implications The findings serve as invaluable tools for public health practitioners and administrators, facilitating scientific assessments and predictions regarding the impact of CDC public information on the public. Originality/value This study used scientific research methods to accurately describe user engagement changes over time for an authoritative public health agency channel on social media. The analysis on user engagements included views, likes, retweets, replies, quotes and bookmarks. Other important characteristics like velocity and half-life for user engagement types were addressed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
coolkid应助雪夜003采纳,获得10
1秒前
zhaoyuan发布了新的文献求助10
5秒前
董吧啦发布了新的文献求助10
5秒前
6秒前
求求科研完成签到,获得积分10
9秒前
儒雅完成签到 ,获得积分10
9秒前
9秒前
LJ发布了新的文献求助10
11秒前
11秒前
赘婿应助偷乐采纳,获得10
12秒前
斯文败类应助yxy采纳,获得30
13秒前
幸福小蜜蜂完成签到 ,获得积分10
13秒前
天天完成签到,获得积分10
15秒前
tearun发布了新的文献求助10
15秒前
17秒前
学勾巴发布了新的文献求助10
17秒前
锅包肉爱吃肉完成签到 ,获得积分10
21秒前
于吉武完成签到,获得积分10
21秒前
脆脆鲨发布了新的文献求助10
21秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
慕青应助科研通管家采纳,获得10
24秒前
bfs应助科研通管家采纳,获得10
24秒前
烟花应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
上官若男应助科研通管家采纳,获得10
24秒前
bkagyin应助科研通管家采纳,获得10
24秒前
打打应助科研通管家采纳,获得10
24秒前
25秒前
25秒前
科研通AI5应助董吧啦采纳,获得10
26秒前
乔笑槐发布了新的文献求助100
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4737053
求助须知:如何正确求助?哪些是违规求助? 4089485
关于积分的说明 12649832
捐赠科研通 3798618
什么是DOI,文献DOI怎么找? 2097423
邀请新用户注册赠送积分活动 1123091
科研通“疑难数据库(出版商)”最低求助积分说明 998506