Generative adversarial networks in medical image reconstruction: A systematic literature review

对抗制 计算机科学 生成语法 人工智能 图像(数学) 生成对抗网络 模式识别(心理学) 机器学习 计算机视觉 自然语言处理
作者
Jabbar Hussain,Magnus Båth,Jonas Ivarsson
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:191: 110094-110094
标识
DOI:10.1016/j.compbiomed.2025.110094
摘要

Recent advancements in generative adversarial networks (GANs) have demonstrated substantial potential in medical image processing. Despite this progress, reconstructing images from incomplete data remains a challenge, impacting image quality. This systematic literature review explores the use of GANs in enhancing and reconstructing medical imaging data. A document survey of computing literature was conducted using the ACM Digital Library to identify relevant articles from journals and conference proceedings using keyword combinations, such as "generative adversarial networks or generative adversarial network," "medical image or medical imaging," and "image reconstruction." Across the reviewed articles, there were 122 datasets used in 175 instances, 89 top metrics employed 335 times, 10 different tasks with a total count of 173, 31 distinct organs featured in 119 instances, and 18 modalities utilized in 121 instances, collectively depicting significant utilization of GANs in medical imaging. The adaptability and efficacy of GANs were showcased across diverse medical tasks, organs, and modalities, utilizing top public as well as private/synthetic datasets for disease diagnosis, including the identification of conditions like cancer in different anatomical regions. The study emphasized GAN's increasing integration and adaptability in diverse radiology modalities, showcasing their transformative impact on diagnostic techniques, including cross-modality tasks. The intricate interplay between network size, batch size, and loss function refinement significantly impacts GAN's performance, although challenges in training persist. The study underscores GANs as dynamic tools shaping medical imaging, contributing significantly to image quality, training methodologies, and overall medical advancements, positioning them as substantial components driving medical advancements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木子完成签到,获得积分10
1秒前
早日毕业佳完成签到,获得积分10
2秒前
Fancy完成签到 ,获得积分20
3秒前
幻月完成签到,获得积分10
3秒前
ahhhhh完成签到,获得积分10
3秒前
请叫我湿人人完成签到,获得积分10
3秒前
七七丫完成签到,获得积分10
4秒前
简单澜发布了新的文献求助10
5秒前
moonlight完成签到,获得积分10
6秒前
zshh发布了新的文献求助10
6秒前
SCZOU发布了新的文献求助10
6秒前
真不记得用户名完成签到 ,获得积分10
7秒前
Akim应助毕业比耶采纳,获得10
8秒前
kjl发布了新的文献求助10
8秒前
sudor123456完成签到,获得积分10
9秒前
Rsoup完成签到,获得积分10
9秒前
李爱国应助今晚睇paper采纳,获得10
10秒前
10秒前
独立卫生间完成签到,获得积分10
11秒前
13秒前
鸣笛应助rubyyyy采纳,获得30
15秒前
16秒前
魔力巴啦啦完成签到 ,获得积分10
16秒前
16秒前
研友_nVWP2Z发布了新的文献求助10
16秒前
机智的研究者完成签到,获得积分10
19秒前
爱上云的绵羊完成签到,获得积分20
20秒前
20秒前
BBGG完成签到,获得积分10
21秒前
wzy512发布了新的文献求助10
22秒前
22秒前
22秒前
cds发布了新的文献求助10
23秒前
小麦子儿完成签到 ,获得积分10
25秒前
25秒前
碧蓝香芦发布了新的文献求助20
25秒前
25秒前
SYLH应助吹又生采纳,获得30
25秒前
Anlionseas完成签到,获得积分10
26秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
China's State Ideology and the Three Gorges Dam 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3903417
求助须知:如何正确求助?哪些是违规求助? 3448081
关于积分的说明 10852191
捐赠科研通 3173670
什么是DOI,文献DOI怎么找? 1753421
邀请新用户注册赠送积分活动 847764
科研通“疑难数据库(出版商)”最低求助积分说明 790387