效率低下
数据包络分析
排名(信息检索)
独特性
背景(考古学)
变量(数学)
计量经济学
标准差
计算机科学
常量(计算机编程)
数学优化
数学
统计
经济
人工智能
微观经济学
数学分析
古生物学
生物
程序设计语言
作者
Bohlool Ebrahimi,Lalitha Dhamotharan,M.-R. Ghasemi,Vincent Charles
出处
期刊:Omega
[Elsevier]
日期:2022-04-28
卷期号:111: 102668-102668
被引量:6
标识
DOI:10.1016/j.omega.2022.102668
摘要
This paper presents a solution to the problem of ranking efficient decision-making units (DMUs) in data envelopment analysis (DEA). We develop a cross-inefficiency approach for the deviation variables framework based on a pair of epsilon-based benevolent and aggressive models for both constant and variable returns-to-scale technologies. The new method improves the discriminating power of DEA, solves the non-uniqueness of ranking solutions, and avoids the negative efficiency scores associated with current models in the deviation variables framework. We illustrate the performance of the approach using a real-life case study. Not only does the research improve the discriminating power, but it also encourages the first step towards integrating the deviation variables framework in the context of decision-making uncertainty.
科研通智能强力驱动
Strongly Powered by AbleSci AI