强化学习
计算机科学
人工智能
卷积神经网络
功能(生物学)
深度学习
价值(数学)
贝尔曼方程
建筑
控制(管理)
增强学习
钢筋
像素
机器学习
数学
工程类
数学优化
艺术
进化生物学
视觉艺术
生物
结构工程
作者
Volodymyr Mnih,Koray Kavukcuoglu,David Silver,Alex Graves,Ioannis Antonoglou,Daan Wierstra,Martin Riedmiller
出处
期刊:Cornell University - arXiv
日期:2013-01-01
被引量:5633
标识
DOI:10.48550/arxiv.1312.5602
摘要
We present the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning. The model is a convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards. We apply our method to seven Atari 2600 games from the Arcade Learning Environment, with no adjustment of the architecture or learning algorithm. We find that it outperforms all previous approaches on six of the games and surpasses a human expert on three of them.
科研通智能强力驱动
Strongly Powered by AbleSci AI