Endoscopic Bladder Tissue Classification Using Seventeen Layered Deep Convolutional Neural Network

卷积神经网络 计算机科学 人工智能 膀胱癌 深度学习 模式识别(心理学) 放射科 医学 癌症 内科学
作者
M. Shyamala Devi,J. Arun Pandian,D. Umanandhini,V Viknesh,G P Vishal
标识
DOI:10.1109/assic60049.2024.10507996
摘要

After a diagnosis of bladder cancer, endoscopic surgery is carried out as it is thought to be the most efficient and appropriate method of treating superficial tumors. It is essential to classify the bladder tissues accurately using MRI since early diagnosis of the problem can aid in treatment and perhaps save lives. Early-stage diagnosis is still challenging due to the delayed onset of indications and tiny alterations in urinary tract tissue that are imperceptible to the naked eye for diagnosis. The automated approach might be utilized to automatically determine the type of endoscopic bladder tissue by using the proper deep learning model with the necessary convolutional layers. This paper suggests the Seventeen Layered Deep Convolutional Neural Network (17-DCNN) to classify the bladder tissue classes effectively. The Endoscopic bladder tissue Dataset from Kaggle is used for the implementation of DOMN that contains 1785 images with four classes as HGC, LGC, NTL, and NST. The 17-DCNN model's initial phase is an analysis of distribution of bladder tissue data images. After data preparation, the existing CNN like DenseNet121, ResNet152, VGG19Net, InceptionV3Net and proposed 17-DCNN model is chosen by fitting the Endoscopic bladder tissue images. The accuracy of the proposed 17-DCNN was 99.32% when compared to other CNN models after implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bjyx完成签到 ,获得积分10
1秒前
等待凝海发布了新的文献求助10
3秒前
急急急寄完成签到,获得积分10
5秒前
10秒前
畅快心情完成签到 ,获得积分10
15秒前
19秒前
23秒前
爱学习的毛完成签到,获得积分10
24秒前
tangke发布了新的文献求助10
25秒前
hutao完成签到,获得积分10
28秒前
小蘑菇应助rover采纳,获得10
29秒前
special完成签到 ,获得积分10
32秒前
33秒前
欣欣完成签到,获得积分10
34秒前
liuhuayaxi发布了新的文献求助10
36秒前
等待凝海完成签到,获得积分10
42秒前
47秒前
研都不研了完成签到 ,获得积分10
47秒前
kk完成签到 ,获得积分10
48秒前
芋头完成签到 ,获得积分10
49秒前
smm发布了新的文献求助10
52秒前
52秒前
徐涵完成签到 ,获得积分10
54秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847423
求助须知:如何正确求助?哪些是违规求助? 6225776
关于积分的说明 15620117
捐赠科研通 4964073
什么是DOI,文献DOI怎么找? 2676366
邀请新用户注册赠送积分活动 1620962
关于科研通互助平台的介绍 1576895