Employing Graph Neural Networks for Predicting Electrode Average Voltages and Screening High-Voltage Sodium Cathode Materials

材料科学 变压器 阴极 电极 电压 支持向量机 卷积神经网络 电气工程 机器学习 计算机科学 物理化学 化学 工程类
作者
Xiaoyue He,Yanxu Chen,Shao Wang,Genqiang Zhang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (19): 24494-24501 被引量:3
标识
DOI:10.1021/acsami.4c00624
摘要

For many years, humans have been relentlessly focused on enhancing battery longevity and boosting energy storage capacities. The performance and durability of a battery depend significantly on the material used for its electrodes. In this context, merging machine learning with density functional theory (DFT) calculations has emerged as a pivotal approach to advancing the exploration of battery crystal structures. We present a new method that combines a graph convolutional neural network (GNN) with a Transformer convolutional layer, which we call Transformer-GNN. To underscore its efficacy, we benchmarked Transformer-GNN against three established statistical machine learning models: Support Vector Machine, Random Forest, and XGBoost. We also developed a standard GNN, which we refer to as Basic-GNN. Additionally, we compared Basic-GNN with Transformer-GNN to highlight the improvements brought about by incorporating the Transformer convolutional layer. The Transformer-GNN model outperforms the other models, achieving the highest R2 value of 0.82 and the lowest mean squared error of 0.3161. Our findings demonstrate that the Transformer-GNN can profoundly understand battery crystal structures, thus forging the path toward more sophisticated and durable battery systems. Leveraging the GNN model's voltage predictions in tandem with the capacity data sourced from the database, we screened and pinpointed Na(NiO2)2 as a high-voltage (higher than 5 V), high-capacity sodium cathode material. We conducted DFT calculations on Na(NiO2)2 and revealed the migration mechanism of the Na ions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
飘逸鑫完成签到,获得积分20
1秒前
2秒前
FashionBoy应助lmz采纳,获得10
2秒前
2秒前
蔡颂华完成签到,获得积分10
3秒前
Francesca发布了新的文献求助10
4秒前
HE发布了新的文献求助10
7秒前
8秒前
汉堡包应助weiwei采纳,获得10
8秒前
8秒前
清修发布了新的文献求助10
9秒前
YeSun发布了新的文献求助10
9秒前
9秒前
CipherSage应助Francesca采纳,获得10
9秒前
酷波er应助乐天采纳,获得10
10秒前
曹慧发布了新的文献求助10
13秒前
13秒前
李李发布了新的文献求助10
14秒前
15秒前
脑洞疼应助殿下小王子采纳,获得10
15秒前
ED应助阿可阿可采纳,获得10
15秒前
一朵云完成签到 ,获得积分10
16秒前
邢慧兰发布了新的文献求助20
17秒前
18秒前
20秒前
20秒前
fenghuo发布了新的文献求助10
20秒前
22秒前
22秒前
共享精神应助Yun采纳,获得10
23秒前
JamesPei应助激动的一手采纳,获得10
23秒前
小马甲应助Jing采纳,获得10
23秒前
科目三应助chuanxue采纳,获得10
23秒前
量子星尘发布了新的文献求助10
24秒前
科研第一深情完成签到,获得积分10
25秒前
25秒前
桐桐应助科研通管家采纳,获得10
26秒前
water应助科研通管家采纳,获得10
26秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3883326
求助须知:如何正确求助?哪些是违规求助? 3425732
关于积分的说明 10745914
捐赠科研通 3150752
什么是DOI,文献DOI怎么找? 1738825
邀请新用户注册赠送积分活动 839506
科研通“疑难数据库(出版商)”最低求助积分说明 784573