亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel denoising method for low-dose CT images based on transformer and CNN

计算机科学 人工智能 卷积神经网络 降噪 图像质量 模式识别(心理学) 医学影像学 特征(语言学) 计算机视觉 图像(数学) 语言学 哲学
作者
Zhang Ju,Zhibo Shangguan,Weiwei Gong,Yun Cheng
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:163: 107162-107162 被引量:27
标识
DOI:10.1016/j.compbiomed.2023.107162
摘要

Computed Tomography (CT) has become a mainstream imaging tool in medical diagnosis. However, the issue of increased cancer risk due to radiation exposure has raised public concern. Low-dose computed tomography (LDCT) technique is a CT scan with lower radiation dose than conventional scans. LDCT is used to make a diagnosis of lesions with the smallest dose of x-rays, and is currently mainly used for early lung cancer screening. However, LDCT has severe image noise, and these noises affect adversely the quality of medical images and thus the diagnosis of lesions. In this paper, we propose a novel LDCT image denoising method based on transformer combined with convolutional neural network (CNN). The encoder part of the network is based on CNN, which is mainly used to extract the image detail information. In the decoder part, we propose a dual-path transformer block (DPTB), which extracts the features of input of the skip connection and the features of input of the previous level through two paths respectively. DPTB can better restore the detail and structure information of the denoised image. In order to pay more attention to the key regions of the feature images extracted at the shallow level of the network, we also propose a multi-feature spatial attention block (MSAB) in the skip connection part. Experimental studies are conducted, and comparisons with the state-of-the-art networks are made, and the results demonstrate that the developed method can effectively remove the noise in CT images and improve the image quality in the evaluation metrics of peak signal to noise ratio (PSNR), structural similarity (SSIM), and root mean square error (RMSE) and is superior to the state-of-the-art models. Our method achieved 28.9720 of PSNR, 0.8595 of SSIM and 14.8657 of RMSE on the Mayo Clinic LDCT Grand Challenge dataset. For different noise level σ (15, 35, and 55) on the QIN_LUNG_CT dataset, our proposed also achieved better performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TanFT完成签到,获得积分10
2秒前
01完成签到,获得积分20
5秒前
14秒前
17秒前
zz发布了新的文献求助10
18秒前
xyjf15发布了新的文献求助30
39秒前
40秒前
tudouni发布了新的文献求助10
56秒前
herococa应助无辜之柔采纳,获得10
1分钟前
tudouni完成签到,获得积分10
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
1分钟前
田様应助无辜之柔采纳,获得10
1分钟前
66发完成签到,获得积分10
1分钟前
嘿嘿江完成签到 ,获得积分10
1分钟前
俭朴的元绿完成签到 ,获得积分10
1分钟前
和风完成签到 ,获得积分10
1分钟前
下一块蛋糕完成签到 ,获得积分10
1分钟前
醉熏的灵发布了新的文献求助10
1分钟前
1分钟前
活泼的大船完成签到,获得积分10
1分钟前
1分钟前
1分钟前
无辜之柔发布了新的文献求助10
2分钟前
2分钟前
xyjf15发布了新的文献求助30
2分钟前
2分钟前
白洋洋发布了新的文献求助10
2分钟前
MCRing完成签到,获得积分10
2分钟前
CAOHOU应助白洋洋采纳,获得10
2分钟前
阿烨完成签到,获得积分10
2分钟前
无辜之柔发布了新的文献求助10
2分钟前
Cuisine完成签到 ,获得积分10
2分钟前
桐桐应助zz采纳,获得10
2分钟前
俏皮的采蓝完成签到 ,获得积分10
2分钟前
小木林完成签到 ,获得积分10
2分钟前
小二郎应助单原子的世界采纳,获得10
2分钟前
Leo完成签到 ,获得积分0
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Medical English Clear and Simple(By Melodie Hull) 400
Oxford English for Careers: Nursing / Medicine • 🩺 出版社:Oxford University Press • 400
English in Medicine(作者:Eric H. Glendinning) 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3927703
求助须知:如何正确求助?哪些是违规求助? 3472431
关于积分的说明 10972489
捐赠科研通 3202269
什么是DOI,文献DOI怎么找? 1769307
邀请新用户注册赠送积分活动 858017
科研通“疑难数据库(出版商)”最低求助积分说明 796259