InBi: A Ferroelastic Monolayer with Strain Tunable Spin–Orbit Dirac Points and Carrier Self-Doping Effect

凝聚态物理 单层 应变工程 迪拉克费米子 费米能量 石墨烯 材料科学 布里渊区 Dirac(视频压缩格式) 兴奋剂 物理 纳米技术 电子 量子力学 相变 中微子
作者
Xi Ding,Yongheng Ge,Yinglu Jia,Gaoyang Gou,Ziming Zhu,Xiao Cheng Zeng
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (12): 21546-21554 被引量:6
标识
DOI:10.1021/acsnano.2c10387
摘要

Semimetallic two-dimensional (2D) Dirac materials beyond graphene, especially 2D materials with robust Dirac points against the spin-orbit coupling (SOC), are still highly sought. Herein, we theoretically demonstrate the InBi monolayer as a long-sought 2D Dirac material whose exotic Dirac Fermionic states cannot be gapped out by SOC. The InBi monolayer with the litharge crystal structure possesses not only 4-fold band degeneracy, linear energy dispersion, and ultrahigh Fermi velocity in the order of 105 m/s, but also spontaneous ferroelasticity that can lead to the orthorhombic lattice deformation and semimetallic electronic structure. Specifically, the symmetry protected spin-orbit Dirac points in 2D InBi are located at the Brillouin Zone (BZ) boundary and near the Fermi level in energy. More importantly, with coexisting spin-orbit Dirac points and spontaneous ferroelasticity, the InBi monolayer exhibits an additional advantage for engineering Dirac Fermionic states by ferroelastic (FE) strain. Energy levels of Dirac points are strongly coupled to FE strain, and the semimetallic electronic structure of the InBi monolayer is also susceptible to the FE strain induced carrier self-doping effect. Depending on the strain orientation within the InBi monolayer, electron and hole Fermi pockets will develop along the two planar directions, leading to the characteristic transport coefficients (as evidenced by our transport simulations based on Boltzmann formalism) for future experimental detection. FE strain tunable Dirac Fermionic states together with the carrier self-doping effect will benefit future development of ultrathin electronic devices with both high carrier mobility and controllable charge conductivities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxwmb完成签到,获得积分10
刚刚
lucky完成签到,获得积分10
1秒前
刘稀完成签到,获得积分10
1秒前
笨考拉完成签到,获得积分10
2秒前
名金学南完成签到,获得积分10
2秒前
zhq完成签到,获得积分10
2秒前
星辰大海应助haheihe采纳,获得10
2秒前
SI完成签到,获得积分10
2秒前
2秒前
PV YTT完成签到,获得积分10
3秒前
壹零零柒完成签到 ,获得积分10
3秒前
傅寒天完成签到,获得积分10
3秒前
宝宝巴士驾驶员完成签到,获得积分10
4秒前
5秒前
aaaiii完成签到,获得积分10
6秒前
慕雪完成签到,获得积分10
6秒前
大王具足虫完成签到,获得积分0
6秒前
6秒前
陈文娜完成签到,获得积分10
7秒前
搜集达人应助Heaven采纳,获得10
8秒前
闾丘志泽完成签到,获得积分10
8秒前
川川完成签到,获得积分10
8秒前
令狐如彤发布了新的文献求助10
9秒前
DrW完成签到,获得积分10
9秒前
YF发布了新的文献求助10
9秒前
9秒前
快乐寄风发布了新的文献求助10
9秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
淡定白易完成签到,获得积分10
10秒前
Zard完成签到,获得积分10
10秒前
10秒前
克偃统统完成签到,获得积分10
11秒前
yyj完成签到,获得积分10
11秒前
laozhao完成签到,获得积分10
11秒前
马某某某某某完成签到,获得积分10
11秒前
gro_ele完成签到,获得积分10
11秒前
12秒前
小许完成签到,获得积分10
13秒前
巧克力张张包完成签到,获得积分10
13秒前
个性灵竹完成签到,获得积分10
13秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Gymnastik für die Jugend 600
Chinese-English Translation Lexicon Version 3.0 500
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
マンネンタケ科植物由来メロテルペノイド類の網羅的全合成/Collective Synthesis of Meroterpenoids Derived from Ganoderma Family 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2384573
求助须知:如何正确求助?哪些是违规求助? 2091380
关于积分的说明 5258539
捐赠科研通 1818335
什么是DOI,文献DOI怎么找? 906994
版权声明 559097
科研通“疑难数据库(出版商)”最低求助积分说明 484327