清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Utilizing Artificial Neural Network and Multiple Linear Regression to Model the Compressive Strength of Recycled Geopolymer Concrete

抗压强度 硅酸盐水泥 粉煤灰 人工神经网络 火山灰 线性回归 材料科学 数学 聚合物 复合材料 水泥 统计 机器学习 计算机科学
作者
Stephen Adeyemi Alabi,Jeffrey Mahachi
出处
期刊:International Journal of Integrated Engineering [Penerbit UTHM]
卷期号:14 (4) 被引量:4
标识
DOI:10.30880/ijie.2022.14.04.005
摘要

Based on the heterogeneity of concrete constituents as well as variability in compressive strength over many magnitudes for various types of concrete, predictive methods for evaluating the compressive strength have now been given considerable attention. As a result, this research compares the performance of the Artificial Neural Network, ANN, in forecasting the compressive strength of geopolymer recycledconcrete (GPRC)based on selected pozzolans (Coal Fly Ash (CFA) and Rice Husk Ash (RHA)) at ages 7, 28, and 56 daysto the traditional Multiple Linear Regression, MLR. The compressive strength of GPRC-based CFAand RHA was determined using 65 concrete samples from eight different mixtures.The developed models were based on the experimental results, which used varying material quantities. The ANN and MLR models were built with eightinput variables: Ordinary Portland cement (OPC), RHA, CFA, Crushed granite (CG), Cupola Furnace Slag (CFS), Alkaline Solution (AS), Water-Binder Ratio (WB), and Concrete Age (CA), with compressive strength being the only predicted variable. Using MATLAB® code, approximately 75% and 25% of the input data were used for training and testing to develop an ANN model for predicting compressive strength, fcu.For ANN and MLR, the input data were trained and tested using the feedforward back-proportion and backward eliminationapproaches, respectively. Based on satisfactory performance in terms of means square error MSE, the most likely model architecture containing eight input layers, thirteen hidden layers, and one output layer neurons was chosen after several trials. According to the MLR results, only three input variables, CFA, CG, and CA, are statistically significant with p-values less than 0.05. R2= 0.9972, MSE = 0.4177, RMSE = 1.8201,for ANN and R2= 0.7410, MSE = 66.6308, RMSE = 290.4370, for MLR. The predicted results demonstrate the proposed model's dependability and computational forecasting capability. The findings of the study have the potential to help a wide range of construction industry in predicting the concrete properties and managing scarce resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碧蓝雁风完成签到 ,获得积分10
14秒前
danli完成签到 ,获得积分10
28秒前
liuqi完成签到 ,获得积分10
34秒前
dyuguo3完成签到 ,获得积分10
53秒前
海阔天空完成签到 ,获得积分10
1分钟前
1分钟前
jumbaumba发布了新的文献求助10
1分钟前
许之北完成签到 ,获得积分10
1分钟前
海洋岩土12138完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
SciGPT应助贪玩钢铁侠采纳,获得10
1分钟前
2分钟前
乐乐完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Noah完成签到 ,获得积分0
2分钟前
简奥斯汀完成签到 ,获得积分10
3分钟前
无悔完成签到 ,获得积分10
3分钟前
搜集达人应助Tethys采纳,获得10
3分钟前
温暖坚定完成签到 ,获得积分10
3分钟前
3分钟前
Tethys发布了新的文献求助10
3分钟前
呆萌的语芹完成签到,获得积分10
4分钟前
蚂蚁踢大象完成签到 ,获得积分10
4分钟前
大胆的小懒猪完成签到 ,获得积分10
4分钟前
胃是内分泌器官完成签到,获得积分10
4分钟前
希望天下0贩的0应助automan采纳,获得10
4分钟前
浚稚完成签到 ,获得积分10
4分钟前
ding应助细心的语蓉采纳,获得30
4分钟前
5分钟前
5分钟前
automan发布了新的文献求助10
5分钟前
5分钟前
automan完成签到,获得积分10
5分钟前
桐桐应助火焰向上采纳,获得10
5分钟前
zzhui完成签到,获得积分10
5分钟前
6分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784818
求助须知:如何正确求助?哪些是违规求助? 3330065
关于积分的说明 10244270
捐赠科研通 3045410
什么是DOI,文献DOI怎么找? 1671678
邀请新用户注册赠送积分活动 800597
科研通“疑难数据库(出版商)”最低求助积分说明 759524