Radiomics-based machine learning models for prediction of medulloblastoma subgroups: a systematic review and meta-analysis of the diagnostic test performance

髓母细胞瘤 医学 无线电技术 荟萃分析 检查表 人口 肿瘤科 内科学 病理 放射科 心理学 环境卫生 认知心理学
作者
Mert Karabacak,Burak Berksu Ozkara,Admir Ozturk,Busra Kaya,Zeynep Cirak,Ece Orak,Zeynep Ozcan
出处
期刊:Acta Radiologica [SAGE Publishing]
卷期号:64 (5): 1994-2003 被引量:14
标识
DOI:10.1177/02841851221143496
摘要

Background Medulloblastomas are a major cause of cancer-related mortality in the pediatric population. Four molecular groups have been identified, and these molecular groups drive risk stratification, prognostic modeling, and the development of novel treatment modalities. It has been demonstrated that radiomics-based machine learning (ML) models are effective at predicting the diagnosis, molecular class, and grades of CNS tumors. Purpose To assess radiomics-based ML models’ diagnostic performance in predicting medulloblastoma subgroups and the methodological quality of the studies. Material and Methods A comprehensive literature search was performed on PubMed; the last search was conducted on 1 May 2022. Studies that predicted all four medulloblastoma subgroups in patients with histopathologically confirmed medulloblastoma and reporting area under the curve (AUC) values were included in the study. The quality assessments were conducted according to the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and Checklist for Artificial Intelligence in Medical Imaging (CLAIM). A meta-analysis of radiomics-based ML studies’ diagnostic performance for the preoperative evaluation of medulloblastoma subgrouping was performed. Results Five studies were included in this meta-analysis. Regarding patient selection, two studies indicated an unclear risk of bias according to the QUADAS-2. The five studies had an average CLAIM score and compliance score of 23.2 and 0.57, respectively. The meta-analysis showed pooled AUCs of 0.88, 0.82, 0.83, and 0.88 for WNT, SHH, group 3, and group 4 for classification, respectively. Conclusion Radiomics-based ML studies have good classification performance in predicting medulloblastoma subgroups, with AUCs >0.80 in every subgroup. To be applied to clinical practice, they need methodological quality improvement and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助科研通管家采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
刚刚
机灵的雪糕完成签到,获得积分10
1秒前
霸气秀发布了新的文献求助10
1秒前
罗中翠发布了新的文献求助10
3秒前
汉堡包应助Bgeelyu采纳,获得10
3秒前
胜天半子发布了新的文献求助10
4秒前
6秒前
7秒前
sxp1031完成签到,获得积分10
7秒前
再休息一分钟完成签到,获得积分10
8秒前
米米米完成签到,获得积分10
8秒前
STAR完成签到 ,获得积分10
8秒前
jia完成签到,获得积分20
11秒前
米米米发布了新的文献求助10
12秒前
WH发布了新的文献求助10
12秒前
momo完成签到,获得积分10
12秒前
Ava应助当呼吸化为空气采纳,获得10
13秒前
瀼瀼发布了新的文献求助20
16秒前
17秒前
CipherSage应助郑雪红采纳,获得10
18秒前
在水一方应助罗中翠采纳,获得10
19秒前
小二郎应助米米米采纳,获得10
20秒前
21秒前
pys完成签到,获得积分10
22秒前
zyznh完成签到 ,获得积分10
23秒前
yanlong发布了新的文献求助10
23秒前
走走完成签到,获得积分10
23秒前
暮夏子发布了新的文献求助10
23秒前
小白先生完成签到,获得积分10
23秒前
25秒前
25秒前
25秒前
Akim应助blueskyzhi采纳,获得10
26秒前
陶醉的蜜蜂完成签到 ,获得积分10
28秒前
29秒前
29秒前
30秒前
学术大王发布了新的文献求助10
30秒前
郑雪红发布了新的文献求助10
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789447
求助须知:如何正确求助?哪些是违规求助? 3334390
关于积分的说明 10270027
捐赠科研通 3050866
什么是DOI,文献DOI怎么找? 1674216
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760732