Cross-sectional proteomic expression in Parkinson's disease-related proteins in drug-naïve patients vs healthy controls with longitudinal clinical follow-up

横断面研究 蛋白质表达 医学 帕金森病 疾病 内科学 肿瘤科 毒品天真 生物信息学 心理学 神经科学 药品 病理 生物 遗传学 药理学 基因
作者
Ilham Y. Abdi,Michael Bartl,Mohammed Dakna,Houari Abdesselem,Nour K. Majbour,Claudia Trenkwalder,Omar El-Agnaf,Brit Mollenhauer
出处
期刊:Neurobiology of Disease [Elsevier BV]
卷期号:177: 105997-105997 被引量:17
标识
DOI:10.1016/j.nbd.2023.105997
摘要

There is an urgent need to find reliable and accessible blood-based biomarkers for early diagnosis of Parkinson's disease (PD) correlating with clinical symptoms and displaying predictive potential to improve future clinical trials. This led us to a conduct large-scale proteomics approach using an advanced high-throughput proteomics technology to create a proteomic profile for PD. Over 1300 proteins were measured in serum samples from a de novo Parkinson's (DeNoPa) cohort made up of 85 deep clinically phenotyped drug-naïve de novo PD patients and 93 matched healthy controls (HC) with longitudinal clinical follow-up available of up to 8 years. The analysis identified 73 differentially expressed proteins (DEPs) of which 14 proteins were confirmed as stable potential diagnostic markers using machine learning tools. Among the DEPs identified, eight proteins-ALCAM, contactin 1, CD36, DUS3, NEGR1, Notch1, TrkB, and BTK- significantly correlated with longitudinal clinical scores including motor and non-motor symptom scores, cognitive function and depression scales, indicating potential predictive values for progression in PD among various phenotypes. Known functions of these proteins and their possible relation to the pathophysiology or symptomatology of PD were discussed and presented with a particular emphasis on the potential biological mechanisms involved, such as cell adhesion, axonal guidance and neuroinflammation, and T-cell activation. In conclusion, with the use of advance multiplex proteomic technology, a blood-based protein signature profile was identified from serum samples of a well-characterized PD cohort capable of potentially differentiating PD from HC and predicting clinical disease progression of related motor and non-motor PD symptoms. We thereby highlight the need to validate and further investigate these markers in future prospective cohorts and assess their possible PD-related mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Guoqiang发布了新的文献求助10
1秒前
科研通AI2S应助infinite采纳,获得10
1秒前
FashionBoy应助迷虫采纳,获得10
4秒前
6秒前
7秒前
默默山槐完成签到,获得积分10
11秒前
就叫柠檬吧应助Shennian采纳,获得10
12秒前
嘉123完成签到 ,获得积分10
14秒前
chen发布了新的文献求助10
14秒前
Yummy发布了新的文献求助10
14秒前
Lucas应助纯情的沛岚采纳,获得10
16秒前
复成完成签到 ,获得积分10
17秒前
满意的大碗完成签到,获得积分20
18秒前
可爱的函函应助123采纳,获得10
19秒前
19秒前
鱼人完成签到,获得积分10
21秒前
默然回首完成签到,获得积分10
23秒前
24秒前
oasis完成签到,获得积分10
25秒前
25秒前
FashionBoy应助PigUniver采纳,获得20
26秒前
落寞元霜发布了新的文献求助10
27秒前
不愿透露姓名科研人完成签到 ,获得积分10
27秒前
28秒前
JamesPei应助dengdeng采纳,获得10
30秒前
123发布了新的文献求助10
31秒前
34秒前
36秒前
包容的海豚完成签到 ,获得积分10
37秒前
37秒前
陶醉怜容完成签到,获得积分10
37秒前
huohuo发布了新的文献求助20
39秒前
40秒前
40秒前
zhu完成签到,获得积分10
42秒前
Leowooer发布了新的文献求助10
42秒前
科研兄发布了新的文献求助10
42秒前
43秒前
酷波er应助江幻天采纳,获得10
44秒前
默然回首发布了新的文献求助10
45秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802585
求助须知:如何正确求助?哪些是违规求助? 3348257
关于积分的说明 10337318
捐赠科研通 3064235
什么是DOI,文献DOI怎么找? 1682495
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764010