Ultrastrong conductive in situ composite composed of nanodiamond incoherently embedded in disordered multilayer graphene

材料科学 石墨烯 原位 钻石 纳米金刚石 复合数 导电体 复合材料 纳米技术 有机化学 化学
作者
Zihe Li,Yujia Wang,Mengdong Ma,Huachun Ma,Wentao Hu,Xiang Zhang,Zewen Zhuge,Shuangshuang Zhang,Kun Luo,Yufei Gao,Lei Sun,Alexander Soldatov,Yingju Wu,Bing Liu,Baozhong Li,Pan Ying,Yang Zhang,Bo Xu,Julong He,Dongli Yu
出处
期刊:Nature Materials [Nature Portfolio]
卷期号:22 (1): 42-49 被引量:84
标识
DOI:10.1038/s41563-022-01425-9
摘要

Traditional ceramics or metals cannot simultaneously achieve ultrahigh strength and high electrical conductivity. The elemental carbon can form a variety of allotropes with entirely different physical properties, providing versatility for tuning mechanical and electrical properties in a wide range. Here, by precisely controlling the extent of transformation of amorphous carbon into diamond within a narrow temperature–pressure range, we synthesize an in situ composite consisting of ultrafine nanodiamond homogeneously dispersed in disordered multilayer graphene with incoherent interfaces, which demonstrates a Knoop hardness of up to ~53 GPa, a compressive strength of up to ~54 GPa and an electrical conductivity of 670–1,240 S m–1 at room temperature. With atomically resolving interface structures and molecular dynamics simulations, we reveal that amorphous carbon transforms into diamond through a nucleation process via a local rearrangement of carbon atoms and diffusion-driven growth, different from the transformation of graphite into diamond. The complex bonding between the diamond-like and graphite-like components greatly improves the mechanical properties of the composite. This superhard, ultrastrong, conductive elemental carbon composite has comprehensive properties that are superior to those of the known conductive ceramics and C/C composites. The intermediate hybridization state at the interfaces also provides insights into the amorphous-to-crystalline phase transition of carbon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Elio完成签到,获得积分10
1秒前
ardoroso完成签到,获得积分10
1秒前
2秒前
Lucas应助藿香采纳,获得10
2秒前
Ava应助小奶狗采纳,获得10
2秒前
3秒前
眯眯眼的采白完成签到,获得积分10
3秒前
我不吃胡萝卜完成签到,获得积分10
3秒前
3秒前
英姑应助宁1采纳,获得10
4秒前
4秒前
4秒前
5秒前
爆米花应助快乐小狗采纳,获得10
5秒前
刘乐乐发布了新的文献求助10
6秒前
每念至此完成签到,获得积分10
6秒前
syy发布了新的文献求助10
7秒前
7秒前
jg完成签到,获得积分10
8秒前
8秒前
ylyao发布了新的文献求助10
9秒前
忧郁的凌波完成签到,获得积分10
9秒前
肥肥完成签到 ,获得积分10
9秒前
luxiaoyu发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
小猫来啦完成签到,获得积分10
10秒前
11秒前
上官若男应助13508104971采纳,获得10
12秒前
共享精神应助聪慧皓轩采纳,获得10
12秒前
12秒前
an完成签到,获得积分10
12秒前
开放筝发布了新的文献求助10
12秒前
wongcong发布了新的文献求助10
12秒前
文静的眼睛完成签到,获得积分10
13秒前
chengqin完成签到 ,获得积分10
13秒前
13秒前
14秒前
Hiaoliem发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4064425
求助须知:如何正确求助?哪些是违规求助? 3602730
关于积分的说明 11442848
捐赠科研通 3325715
什么是DOI,文献DOI怎么找? 1828346
邀请新用户注册赠送积分活动 898699
科研通“疑难数据库(出版商)”最低求助积分说明 819200